File size: 8,864 Bytes
7d1484a 710e02a 74280ee 7d1484a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
"""
Adapted from ArmoRM:
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1/blob/main/modeling_custom.py
"""
from dataclasses import dataclass
from typing import Optional, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers import LlamaModel, LlamaPreTrainedModel, LlamaForSequenceClassification, AutoModelForSequenceClassification
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
from transformers.utils import ModelOutput
from transformers.utils import add_start_docstrings_to_model_forward
class GatingNetwork(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True, temperature: float = 10,
logit_scale: float = 1., hidden_dim: int = 1024, n_hidden: int = 3):
super().__init__()
self.temperature = temperature
self.logit_scale = nn.Parameter(torch.ones(1) * logit_scale)
layers = []
for _ in range(n_hidden):
layers.append(nn.Linear(in_features, hidden_dim, bias=False)) # for BN
layers.append(nn.ReLU())
layers.append(nn.BatchNorm1d(hidden_dim))
in_features = hidden_dim
layers.append(nn.Linear(in_features, out_features, bias=bias))
self.layers = nn.ModuleList(layers)
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
# Apply the linear layers with ReLU
for i, layer in enumerate(self.layers):
x = layer(x)
# Apply the conditional ReLU using the expanded mask
x = F.softmax(x / self.temperature, dim=1)
return x * self.logit_scale[0]
#return x
# token_pattern = tokenizer.encode("<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", add_special_tokens=False, )
token_pattern = [128009, 128006, 78191, 128007, 271]
def find_token_for_gating(lst, ):
"""Find the last occurrence of a token_pattern in a list."""
token_pattern_len = len(token_pattern)
search_end = len(lst)
for j in range(search_end - token_pattern_len, -1, -1):
if lst[j:j + token_pattern_len] == token_pattern:
return j
raise ValueError("Token pattern not found in the list.")
@dataclass
class CustomOutput(ModelOutput):
"""
Base class for outputs of sentence classification models.
Args:
hidden_state (`Tuple[torch.FloatTensor]` of length `config.num_hidden_layers`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
prompt_embedding (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
The embeddings of the prompt tokens.
gating_output (`torch.FloatTensor` of shape `(batch_size, config.num_objectives)`):
The logits for the gating network.
score (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
The final reward score.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Same as score
"""
reward_quantiles: torch.FloatTensor = None
rewards: torch.FloatTensor = None
gating_output: Optional[torch.FloatTensor] = None
score: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
class LlamaForRewardModelWithGating(LlamaPreTrainedModel):
def __init__(self, config):
config.torch_dtype = torch.bfloat16
super().__init__(config)
#self.model = AutoModelForSequenceClassification.from_pretrained(
# "Skywork/Skywork-Reward-Llama-3.1-8B", num_labels=1, torch_dtype=torch.bfloat16, use_flash_attention_2=True).model
self.model = LlamaModel(config)#.to(torch.bfloat16)
self.num_labels = config.num_labels
config_dict = config.to_dict()
self.num_objectives = config_dict.get("num_objectives", 19)
self.num_quantiles = config.num_quantiles
self.quantiles = torch.linspace(0., 1., config.num_quantiles + 2)[1:-1]
self.regression_layer = nn.Linear(config.hidden_size, config.num_quantiles * self.num_objectives, bias=False)
self.post_init()
# Not using torch.eye because it is not supported in BF16
I = torch.zeros(self.num_objectives, self.num_objectives)
I[range(self.num_objectives), range(self.num_objectives)] = 1.
self.reward_transform_matrix = nn.Parameter(I)
self.reward_transform_matrix.requires_grad = False
# Initialize weights and apply final processing
self.gating = GatingNetwork(config.hidden_size, config.num_objectives,
temperature=config_dict.get("gating_temperature", 10),
hidden_dim=config_dict.get("gating_hidden_dim", 1024),
n_hidden=config_dict.get("gating_n_hidden", 3))
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> CustomOutput:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
tokens_hidden_states = transformer_outputs[0]
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(tokens_hidden_states.device)
else:
sequence_lengths = -1
dummy_iterator = torch.arange(batch_size, device=tokens_hidden_states.device)
hidden_states = tokens_hidden_states[dummy_iterator, sequence_lengths]
assert hidden_states.shape == (batch_size, self.config.hidden_size)
with torch.autocast(device_type=hidden_states.device.type, dtype=torch.float32):
rewards = self.regression_layer(hidden_states.float())
rewards = rewards.reshape(-1, self.config.num_objectives, self.config.num_quantiles)
gating_token_positions = [find_token_for_gating(ids.tolist()) for ids in input_ids]
prompt_embedding = tokens_hidden_states[dummy_iterator, gating_token_positions, :]
gating_output = self.gating(prompt_embedding.float())
reward_quantiles_all_adjusted = torch.matmul(
torch.transpose(rewards.float(), 1, 2), self.reward_transform_matrix)
# [B, num_quantiles, num_objectives]
reward_quantiles = torch.mul(
gating_output.unsqueeze(-1).repeat(1, 1, self.num_objectives),
torch.transpose(reward_quantiles_all_adjusted, 1, 2)
).sum(1)
rewards_expectation = rewards.float().mean(dim=2)
rewards_expectation_adjusted = rewards_expectation @ self.reward_transform_matrix
score = torch.sum(gating_output * rewards_expectation_adjusted, dim=1, keepdim=True)
return CustomOutput(
reward_quantiles=reward_quantiles,
rewards=rewards_expectation_adjusted,
gating_output=gating_output,
score=score,
logits=score,
)
|