File size: 8,864 Bytes
7d1484a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710e02a
 
74280ee
7d1484a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
Adapted from ArmoRM:
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1/blob/main/modeling_custom.py
"""

from dataclasses import dataclass
from typing import Optional, List, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers import LlamaModel, LlamaPreTrainedModel, LlamaForSequenceClassification, AutoModelForSequenceClassification
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
from transformers.utils import ModelOutput
from transformers.utils import add_start_docstrings_to_model_forward


class GatingNetwork(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = True, temperature: float = 10,
                 logit_scale: float = 1., hidden_dim: int = 1024, n_hidden: int = 3):
        super().__init__()
        self.temperature = temperature
        self.logit_scale = nn.Parameter(torch.ones(1) * logit_scale)
        layers = []
        for _ in range(n_hidden):
            layers.append(nn.Linear(in_features, hidden_dim, bias=False))  # for BN
            layers.append(nn.ReLU())
            layers.append(nn.BatchNorm1d(hidden_dim))
            in_features = hidden_dim
        layers.append(nn.Linear(in_features, out_features, bias=bias))
        self.layers = nn.ModuleList(layers)

    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        # Apply the linear layers with ReLU
        for i, layer in enumerate(self.layers):
            x = layer(x)
        # Apply the conditional ReLU using the expanded mask
        x = F.softmax(x / self.temperature, dim=1)
        return x * self.logit_scale[0]
        #return x


# token_pattern = tokenizer.encode("<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", add_special_tokens=False, )
token_pattern = [128009, 128006, 78191, 128007, 271]


def find_token_for_gating(lst, ):
    """Find the last occurrence of a token_pattern in a list."""
    token_pattern_len = len(token_pattern)
    search_end = len(lst)
    for j in range(search_end - token_pattern_len, -1, -1):
        if lst[j:j + token_pattern_len] == token_pattern:
            return j
    raise ValueError("Token pattern not found in the list.")


@dataclass
class CustomOutput(ModelOutput):
    """
    Base class for outputs of sentence classification models.

    Args:
        hidden_state (`Tuple[torch.FloatTensor]` of length `config.num_hidden_layers`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        prompt_embedding (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
            The embeddings of the prompt tokens.
        gating_output (`torch.FloatTensor` of shape `(batch_size, config.num_objectives)`):
            The logits for the gating network.
        score (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            The final reward score.
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Same as score
    """

    reward_quantiles: torch.FloatTensor = None
    rewards: torch.FloatTensor = None
    gating_output: Optional[torch.FloatTensor] = None
    score: Optional[torch.FloatTensor] = None
    logits: Optional[torch.FloatTensor] = None


class LlamaForRewardModelWithGating(LlamaPreTrainedModel):
    def __init__(self, config):
        config.torch_dtype = torch.bfloat16
        super().__init__(config)
        #self.model = AutoModelForSequenceClassification.from_pretrained(
        #        "Skywork/Skywork-Reward-Llama-3.1-8B", num_labels=1, torch_dtype=torch.bfloat16, use_flash_attention_2=True).model
        self.model = LlamaModel(config)#.to(torch.bfloat16)
        self.num_labels = config.num_labels
        config_dict = config.to_dict()
        self.num_objectives = config_dict.get("num_objectives", 19)
        self.num_quantiles = config.num_quantiles
        self.quantiles = torch.linspace(0., 1., config.num_quantiles + 2)[1:-1]
        self.regression_layer = nn.Linear(config.hidden_size, config.num_quantiles * self.num_objectives, bias=False)
        self.post_init()
        # Not using torch.eye because it is not supported in BF16
        I = torch.zeros(self.num_objectives, self.num_objectives)
        I[range(self.num_objectives), range(self.num_objectives)] = 1.
        self.reward_transform_matrix = nn.Parameter(I)
        self.reward_transform_matrix.requires_grad = False

        # Initialize weights and apply final processing
        self.gating = GatingNetwork(config.hidden_size, config.num_objectives,
                                    temperature=config_dict.get("gating_temperature", 10),
                                    hidden_dim=config_dict.get("gating_hidden_dim", 1024),
                                    n_hidden=config_dict.get("gating_n_hidden", 3))

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> CustomOutput:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        tokens_hidden_states = transformer_outputs[0]

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(tokens_hidden_states.device)
            else:
                sequence_lengths = -1

        dummy_iterator = torch.arange(batch_size, device=tokens_hidden_states.device)
        hidden_states = tokens_hidden_states[dummy_iterator, sequence_lengths]
        assert hidden_states.shape == (batch_size, self.config.hidden_size)

        with torch.autocast(device_type=hidden_states.device.type, dtype=torch.float32):
            rewards = self.regression_layer(hidden_states.float())
            rewards = rewards.reshape(-1, self.config.num_objectives, self.config.num_quantiles)

            gating_token_positions = [find_token_for_gating(ids.tolist()) for ids in input_ids]
            prompt_embedding = tokens_hidden_states[dummy_iterator, gating_token_positions, :]
            gating_output = self.gating(prompt_embedding.float())
        
            reward_quantiles_all_adjusted = torch.matmul(
                torch.transpose(rewards.float(), 1, 2), self.reward_transform_matrix)
            # [B, num_quantiles, num_objectives]
            reward_quantiles = torch.mul(
                gating_output.unsqueeze(-1).repeat(1, 1, self.num_objectives),
                torch.transpose(reward_quantiles_all_adjusted, 1, 2)
            ).sum(1)

            rewards_expectation = rewards.float().mean(dim=2)

            rewards_expectation_adjusted = rewards_expectation @ self.reward_transform_matrix
            score = torch.sum(gating_output * rewards_expectation_adjusted, dim=1, keepdim=True)

        return CustomOutput(
            reward_quantiles=reward_quantiles,
            rewards=rewards_expectation_adjusted,
            gating_output=gating_output,
            score=score,
            logits=score,
        )