update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- funsd-layoutlmv3
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: lilt-roberta-en-base-finetuned-funsd
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: funsd-layoutlmv3
|
19 |
+
type: funsd-layoutlmv3
|
20 |
+
config: funsd
|
21 |
+
split: train
|
22 |
+
args: funsd
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 0.8761670761670761
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: 0.8857426726279185
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.8809288537549407
|
33 |
+
- name: Accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.8068465470105789
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# lilt-roberta-en-base-finetuned-funsd
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [nielsr/lilt-roberta-en-base](https://huggingface.co/nielsr/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 1.6552
|
46 |
+
- Precision: 0.8762
|
47 |
+
- Recall: 0.8857
|
48 |
+
- F1: 0.8809
|
49 |
+
- Accuracy: 0.8068
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 5e-05
|
69 |
+
- train_batch_size: 8
|
70 |
+
- eval_batch_size: 8
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- lr_scheduler_warmup_steps: 0.1
|
75 |
+
- training_steps: 2000
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 5.26 | 100 | 1.1789 | 0.8506 | 0.8485 | 0.8495 | 0.7869 |
|
82 |
+
| No log | 10.53 | 200 | 1.2382 | 0.8360 | 0.8788 | 0.8569 | 0.7970 |
|
83 |
+
| No log | 15.79 | 300 | 1.3766 | 0.8557 | 0.8897 | 0.8724 | 0.7909 |
|
84 |
+
| No log | 21.05 | 400 | 1.5590 | 0.8368 | 0.8763 | 0.8561 | 0.7792 |
|
85 |
+
| 0.04 | 26.32 | 500 | 1.4379 | 0.8562 | 0.8813 | 0.8685 | 0.7992 |
|
86 |
+
| 0.04 | 31.58 | 600 | 1.5397 | 0.8593 | 0.8947 | 0.8766 | 0.8054 |
|
87 |
+
| 0.04 | 36.84 | 700 | 1.6132 | 0.8621 | 0.8723 | 0.8672 | 0.7933 |
|
88 |
+
| 0.04 | 42.11 | 800 | 1.6483 | 0.8566 | 0.8872 | 0.8716 | 0.7777 |
|
89 |
+
| 0.04 | 47.37 | 900 | 1.6593 | 0.8641 | 0.8813 | 0.8726 | 0.7895 |
|
90 |
+
| 0.0044 | 52.63 | 1000 | 1.6704 | 0.8595 | 0.8718 | 0.8656 | 0.7925 |
|
91 |
+
| 0.0044 | 57.89 | 1100 | 1.6795 | 0.8495 | 0.8803 | 0.8646 | 0.7748 |
|
92 |
+
| 0.0044 | 63.16 | 1200 | 1.5515 | 0.8604 | 0.8912 | 0.8755 | 0.7991 |
|
93 |
+
| 0.0044 | 68.42 | 1300 | 1.6665 | 0.8573 | 0.8867 | 0.8718 | 0.7821 |
|
94 |
+
| 0.0044 | 73.68 | 1400 | 1.5893 | 0.8604 | 0.8877 | 0.8738 | 0.7895 |
|
95 |
+
| 0.0008 | 78.95 | 1500 | 1.5613 | 0.8603 | 0.8872 | 0.8736 | 0.8123 |
|
96 |
+
| 0.0008 | 84.21 | 1600 | 1.5853 | 0.8521 | 0.8872 | 0.8693 | 0.8040 |
|
97 |
+
| 0.0008 | 89.47 | 1700 | 1.6539 | 0.8707 | 0.8833 | 0.8769 | 0.8077 |
|
98 |
+
| 0.0008 | 94.74 | 1800 | 1.6634 | 0.8787 | 0.8813 | 0.8800 | 0.8079 |
|
99 |
+
| 0.0008 | 100.0 | 1900 | 1.6534 | 0.8810 | 0.8862 | 0.8836 | 0.8073 |
|
100 |
+
| 0.0004 | 105.26 | 2000 | 1.6552 | 0.8762 | 0.8857 | 0.8809 | 0.8068 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.23.0.dev0
|
106 |
+
- Pytorch 1.12.1+cu113
|
107 |
+
- Datasets 2.5.1
|
108 |
+
- Tokenizers 0.13.0
|