nielsr HF staff commited on
Commit
43a62d7
1 Parent(s): 661834b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - funsd-layoutlmv3
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: lilt-roberta-en-base-finetuned-funsd
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: funsd-layoutlmv3
19
+ type: funsd-layoutlmv3
20
+ config: funsd
21
+ split: train
22
+ args: funsd
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.8761670761670761
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.8857426726279185
30
+ - name: F1
31
+ type: f1
32
+ value: 0.8809288537549407
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.8068465470105789
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # lilt-roberta-en-base-finetuned-funsd
42
+
43
+ This model is a fine-tuned version of [nielsr/lilt-roberta-en-base](https://huggingface.co/nielsr/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 1.6552
46
+ - Precision: 0.8762
47
+ - Recall: 0.8857
48
+ - F1: 0.8809
49
+ - Accuracy: 0.8068
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 5e-05
69
+ - train_batch_size: 8
70
+ - eval_batch_size: 8
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - lr_scheduler_warmup_steps: 0.1
75
+ - training_steps: 2000
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 5.26 | 100 | 1.1789 | 0.8506 | 0.8485 | 0.8495 | 0.7869 |
82
+ | No log | 10.53 | 200 | 1.2382 | 0.8360 | 0.8788 | 0.8569 | 0.7970 |
83
+ | No log | 15.79 | 300 | 1.3766 | 0.8557 | 0.8897 | 0.8724 | 0.7909 |
84
+ | No log | 21.05 | 400 | 1.5590 | 0.8368 | 0.8763 | 0.8561 | 0.7792 |
85
+ | 0.04 | 26.32 | 500 | 1.4379 | 0.8562 | 0.8813 | 0.8685 | 0.7992 |
86
+ | 0.04 | 31.58 | 600 | 1.5397 | 0.8593 | 0.8947 | 0.8766 | 0.8054 |
87
+ | 0.04 | 36.84 | 700 | 1.6132 | 0.8621 | 0.8723 | 0.8672 | 0.7933 |
88
+ | 0.04 | 42.11 | 800 | 1.6483 | 0.8566 | 0.8872 | 0.8716 | 0.7777 |
89
+ | 0.04 | 47.37 | 900 | 1.6593 | 0.8641 | 0.8813 | 0.8726 | 0.7895 |
90
+ | 0.0044 | 52.63 | 1000 | 1.6704 | 0.8595 | 0.8718 | 0.8656 | 0.7925 |
91
+ | 0.0044 | 57.89 | 1100 | 1.6795 | 0.8495 | 0.8803 | 0.8646 | 0.7748 |
92
+ | 0.0044 | 63.16 | 1200 | 1.5515 | 0.8604 | 0.8912 | 0.8755 | 0.7991 |
93
+ | 0.0044 | 68.42 | 1300 | 1.6665 | 0.8573 | 0.8867 | 0.8718 | 0.7821 |
94
+ | 0.0044 | 73.68 | 1400 | 1.5893 | 0.8604 | 0.8877 | 0.8738 | 0.7895 |
95
+ | 0.0008 | 78.95 | 1500 | 1.5613 | 0.8603 | 0.8872 | 0.8736 | 0.8123 |
96
+ | 0.0008 | 84.21 | 1600 | 1.5853 | 0.8521 | 0.8872 | 0.8693 | 0.8040 |
97
+ | 0.0008 | 89.47 | 1700 | 1.6539 | 0.8707 | 0.8833 | 0.8769 | 0.8077 |
98
+ | 0.0008 | 94.74 | 1800 | 1.6634 | 0.8787 | 0.8813 | 0.8800 | 0.8079 |
99
+ | 0.0008 | 100.0 | 1900 | 1.6534 | 0.8810 | 0.8862 | 0.8836 | 0.8073 |
100
+ | 0.0004 | 105.26 | 2000 | 1.6552 | 0.8762 | 0.8857 | 0.8809 | 0.8068 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.23.0.dev0
106
+ - Pytorch 1.12.1+cu113
107
+ - Datasets 2.5.1
108
+ - Tokenizers 0.13.0