Commit
·
c2d8651
1
Parent(s):
05dc8d3
Update README.md
Browse files
README.md
CHANGED
@@ -23,3 +23,48 @@ I will also provide dataset which can be used in Azerbaijani medical QA and rela
|
|
23 |
|
24 |
# How to use
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# How to use
|
25 |
|
26 |
+
Here is how to use this model.
|
27 |
+
|
28 |
+
__Firstly, you need to build a dictionary with medical branch names and their numbers, because target is encoded and model output will be a number.__
|
29 |
+
|
30 |
+
```python
|
31 |
+
branch_dict = {0: 'Endoskopist', 1: 'Nevropatoloq',2: 'Dermato veneroloq',3: 'Qastroenteroloq',
|
32 |
+
4: 'Psixoloq', 5: 'Pediatr', 6: 'Proktoloq', 7: 'Endokrinoloq',
|
33 |
+
8: 'Psixoterapevt', 9: 'Allerqoloq', 10: 'Oftalmoloq', 11: 'Kardioloq', 12: 'Uroloq',
|
34 |
+
13: 'Plastik cərrah', 14: 'Cərrah-proktoloq', 15: 'Ümumi cərrah',
|
35 |
+
16: 'Hepatoloq', 17: 'LOR həkimi', 18: 'Ginekoloq'}
|
36 |
+
```
|
37 |
+
|
38 |
+
__Secondly, we will use a simple Python function in order to convert model result to branch name.__
|
39 |
+
|
40 |
+
```python
|
41 |
+
def result_helper_funct(model_result):
|
42 |
+
|
43 |
+
result = model_result[0][0]
|
44 |
+
if result in branch_dict.keys():
|
45 |
+
return branch_dict[result]
|
46 |
+
```
|
47 |
+
|
48 |
+
__Then, we need to install simpletransformers library__
|
49 |
+
|
50 |
+
```python
|
51 |
+
!pip install simpletransformers
|
52 |
+
```
|
53 |
+
__After succesfully installing, use pre-trained model.__
|
54 |
+
|
55 |
+
```python
|
56 |
+
from simpletransformers.classification import ClassificationModel
|
57 |
+
model = ClassificationModel("bert", "nijatzeynalov/azerbaijani-medical-question-classification", use_cuda=False)
|
58 |
+
```
|
59 |
+
|
60 |
+
__ At the next step, we just write down the text we want to classify and use our helper function.__
|
61 |
+
|
62 |
+
```python
|
63 |
+
sample_text = 'salam menim qulagimda agri var'
|
64 |
+
result = model.predict([sample_text])
|
65 |
+
|
66 |
+
result_helper_funct(result)
|
67 |
+
|
68 |
+
'LOR həkimi'
|
69 |
+
|
70 |
+
```
|