nikatonika commited on
Commit
1728648
·
verified ·
1 Parent(s): df57e31

Update model after training

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,424 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:5933
8
+ - loss:TripletLoss
9
+ widget:
10
+ - source_sentence: There is an inverse correlation between Patient age and success
11
+ rates.
12
+ sentences:
13
+ - Oh! So close to retirement.
14
+ - Hes in excellent health. This was his first hospitalisation since breaking his
15
+ leg at 23. Or 22, Im not sure anymore.
16
+ - He was in the Navy not the Marines.
17
+ - source_sentence: get her consent. Shes moved on! new hub, new kid. She wants nothing
18
+ to do with Drews death. Or me.
19
+ sentences:
20
+ - Now, hold on! Hold on! Oh yeah, I said Rachels name, but it didnt mean anything,
21
+ Okay? Shesshes just a friend and thats all! Thats all!
22
+ - Youre angry because your kid died. More than that, because you dont have an answer.
23
+ People need answers.
24
+ - Why did Gillick give me ketamine during my surgery
25
+ - source_sentence: Im ordering her cancer treatment to be continued. Why does it cost
26
+ $2,300 to fix a coffee maParkne?
27
+ sentences:
28
+ - Yeah, yeah, yeah, save it, were busy. Luke, give us another half hour with your
29
+ mom. We need to do some tests. Nice kid. Take her off the psych meds,
30
+ - Because, II shouldve called! I threw her at his man nipples!
31
+ - Chemo worked because cells are basically tumors. Chemo shrunk them. Youre still
32
+ gonna say no, arent you
33
+ - source_sentence: This one works in financial district. She can get tips, give you
34
+ leg up in market. What is fudgey Gonzalez?
35
+ sentences:
36
+ - Bosley. Either tell him hes an idiot, or tell me why Im wrong.
37
+ - Pam! You cant be serious.
38
+ - Uh, imagine a vanilla Gonzalez, but from the other side.
39
+ - source_sentence: Does this have anything to do with Addie?
40
+ sentences:
41
+ - Lets say yes.
42
+ - Check it out, no one will tell me where Emily is, so Im gonna send 72 longstem,
43
+ red roses to Emilys parents house, one for
44
+ - Sure. and having them sitting in my office schmoozing about their favourite Algerian
45
+ surfing movies, thats a much better system. Wait a sec. Were you in Row D
46
+ pipeline_tag: sentence-similarity
47
+ library_name: sentence-transformers
48
+ metrics:
49
+ - cosine_accuracy
50
+ model-index:
51
+ - name: SentenceTransformer
52
+ results:
53
+ - task:
54
+ type: triplet
55
+ name: Triplet
56
+ dataset:
57
+ name: dev evaluator
58
+ type: dev_evaluator
59
+ metrics:
60
+ - type: cosine_accuracy
61
+ value: 0.5451482534408569
62
+ name: Cosine Accuracy
63
+ - task:
64
+ type: triplet
65
+ name: Triplet
66
+ dataset:
67
+ name: final evaluator
68
+ type: final_evaluator
69
+ metrics:
70
+ - type: cosine_accuracy
71
+ value: 0.8827493190765381
72
+ name: Cosine Accuracy
73
+ ---
74
+
75
+ # SentenceTransformer
76
+
77
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** Sentence Transformer
83
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
84
+ - **Maximum Sequence Length:** 128 tokens
85
+ - **Output Dimensionality:** 768 dimensions
86
+ - **Similarity Function:** Cosine Similarity
87
+ <!-- - **Training Dataset:** Unknown -->
88
+ <!-- - **Language:** Unknown -->
89
+ <!-- - **License:** Unknown -->
90
+
91
+ ### Model Sources
92
+
93
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
94
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
95
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
96
+
97
+ ### Full Model Architecture
98
+
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
102
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("nikatonika/chatbot_biencoder")
122
+ # Run inference
123
+ sentences = [
124
+ 'Does this have anything to do with Addie?',
125
+ 'Lets say yes.',
126
+ 'Check it out, no one will tell me where Emily is, so Im gonna send 72 longstem, red roses to Emilys parents house, one for',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 768]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ ## Evaluation
163
+
164
+ ### Metrics
165
+
166
+ #### Triplet
167
+
168
+ * Datasets: `dev_evaluator` and `final_evaluator`
169
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
170
+
171
+ | Metric | dev_evaluator | final_evaluator |
172
+ |:--------------------|:--------------|:----------------|
173
+ | **cosine_accuracy** | **0.5451** | **0.8827** |
174
+
175
+ <!--
176
+ ## Bias, Risks and Limitations
177
+
178
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
179
+ -->
180
+
181
+ <!--
182
+ ### Recommendations
183
+
184
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
185
+ -->
186
+
187
+ ## Training Details
188
+
189
+ ### Training Dataset
190
+
191
+ #### Unnamed Dataset
192
+
193
+ * Size: 5,933 training samples
194
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
195
+ * Approximate statistics based on the first 1000 samples:
196
+ | | sentence_0 | sentence_1 | sentence_2 |
197
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
198
+ | type | string | string | string |
199
+ | details | <ul><li>min: 3 tokens</li><li>mean: 13.46 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.83 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 19.0 tokens</li><li>max: 50 tokens</li></ul> |
200
+ * Samples:
201
+ | sentence_0 | sentence_1 | sentence_2 |
202
+ |:--------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
203
+ | <code>specifically told you not to assume . Can we at least assume that Im not dying tomorrow? Whereas this kid...</code> | <code>PET rEveals sEveral more hotspots. But theyre nonspecific...</code> | <code>Well, I did mention the Mars Rover incident to that FBI agent and probably cost Howard his security clearance.</code> |
204
+ | <code>How can we do that if we know youre not?</code> | <code>You dont know anything! Except, hopefully, our Patient on anticonvulsive medication has a seizure.</code> | <code>Now come on. Well, Im glad we worked things out.</code> |
205
+ | <code>Why? No way youre just doing her a favour.</code> | <code>ER is standing room only. Which means Camerons bound to make a mistake. Find it so I can blackmail her. As far as you know, this is way more than</code> | <code>You know what you should do? Take a vacation.</code> |
206
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
207
+ ```json
208
+ {
209
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
210
+ "triplet_margin": 5
211
+ }
212
+ ```
213
+
214
+ ### Training Hyperparameters
215
+ #### Non-Default Hyperparameters
216
+
217
+ - `num_train_epochs`: 8
218
+ - `multi_dataset_batch_sampler`: round_robin
219
+
220
+ #### All Hyperparameters
221
+ <details><summary>Click to expand</summary>
222
+
223
+ - `overwrite_output_dir`: False
224
+ - `do_predict`: False
225
+ - `eval_strategy`: no
226
+ - `prediction_loss_only`: True
227
+ - `per_device_train_batch_size`: 8
228
+ - `per_device_eval_batch_size`: 8
229
+ - `per_gpu_train_batch_size`: None
230
+ - `per_gpu_eval_batch_size`: None
231
+ - `gradient_accumulation_steps`: 1
232
+ - `eval_accumulation_steps`: None
233
+ - `torch_empty_cache_steps`: None
234
+ - `learning_rate`: 5e-05
235
+ - `weight_decay`: 0.0
236
+ - `adam_beta1`: 0.9
237
+ - `adam_beta2`: 0.999
238
+ - `adam_epsilon`: 1e-08
239
+ - `max_grad_norm`: 1
240
+ - `num_train_epochs`: 8
241
+ - `max_steps`: -1
242
+ - `lr_scheduler_type`: linear
243
+ - `lr_scheduler_kwargs`: {}
244
+ - `warmup_ratio`: 0.0
245
+ - `warmup_steps`: 0
246
+ - `log_level`: passive
247
+ - `log_level_replica`: warning
248
+ - `log_on_each_node`: True
249
+ - `logging_nan_inf_filter`: True
250
+ - `save_safetensors`: True
251
+ - `save_on_each_node`: False
252
+ - `save_only_model`: False
253
+ - `restore_callback_states_from_checkpoint`: False
254
+ - `no_cuda`: False
255
+ - `use_cpu`: False
256
+ - `use_mps_device`: False
257
+ - `seed`: 42
258
+ - `data_seed`: None
259
+ - `jit_mode_eval`: False
260
+ - `use_ipex`: False
261
+ - `bf16`: False
262
+ - `fp16`: False
263
+ - `fp16_opt_level`: O1
264
+ - `half_precision_backend`: auto
265
+ - `bf16_full_eval`: False
266
+ - `fp16_full_eval`: False
267
+ - `tf32`: None
268
+ - `local_rank`: 0
269
+ - `ddp_backend`: None
270
+ - `tpu_num_cores`: None
271
+ - `tpu_metrics_debug`: False
272
+ - `debug`: []
273
+ - `dataloader_drop_last`: False
274
+ - `dataloader_num_workers`: 0
275
+ - `dataloader_prefetch_factor`: None
276
+ - `past_index`: -1
277
+ - `disable_tqdm`: False
278
+ - `remove_unused_columns`: True
279
+ - `label_names`: None
280
+ - `load_best_model_at_end`: False
281
+ - `ignore_data_skip`: False
282
+ - `fsdp`: []
283
+ - `fsdp_min_num_params`: 0
284
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
285
+ - `fsdp_transformer_layer_cls_to_wrap`: None
286
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
287
+ - `deepspeed`: None
288
+ - `label_smoothing_factor`: 0.0
289
+ - `optim`: adamw_torch
290
+ - `optim_args`: None
291
+ - `adafactor`: False
292
+ - `group_by_length`: False
293
+ - `length_column_name`: length
294
+ - `ddp_find_unused_parameters`: None
295
+ - `ddp_bucket_cap_mb`: None
296
+ - `ddp_broadcast_buffers`: False
297
+ - `dataloader_pin_memory`: True
298
+ - `dataloader_persistent_workers`: False
299
+ - `skip_memory_metrics`: True
300
+ - `use_legacy_prediction_loop`: False
301
+ - `push_to_hub`: False
302
+ - `resume_from_checkpoint`: None
303
+ - `hub_model_id`: None
304
+ - `hub_strategy`: every_save
305
+ - `hub_private_repo`: None
306
+ - `hub_always_push`: False
307
+ - `gradient_checkpointing`: False
308
+ - `gradient_checkpointing_kwargs`: None
309
+ - `include_inputs_for_metrics`: False
310
+ - `include_for_metrics`: []
311
+ - `eval_do_concat_batches`: True
312
+ - `fp16_backend`: auto
313
+ - `push_to_hub_model_id`: None
314
+ - `push_to_hub_organization`: None
315
+ - `mp_parameters`:
316
+ - `auto_find_batch_size`: False
317
+ - `full_determinism`: False
318
+ - `torchdynamo`: None
319
+ - `ray_scope`: last
320
+ - `ddp_timeout`: 1800
321
+ - `torch_compile`: False
322
+ - `torch_compile_backend`: None
323
+ - `torch_compile_mode`: None
324
+ - `dispatch_batches`: None
325
+ - `split_batches`: None
326
+ - `include_tokens_per_second`: False
327
+ - `include_num_input_tokens_seen`: False
328
+ - `neftune_noise_alpha`: None
329
+ - `optim_target_modules`: None
330
+ - `batch_eval_metrics`: False
331
+ - `eval_on_start`: False
332
+ - `use_liger_kernel`: False
333
+ - `eval_use_gather_object`: False
334
+ - `average_tokens_across_devices`: False
335
+ - `prompts`: None
336
+ - `batch_sampler`: batch_sampler
337
+ - `multi_dataset_batch_sampler`: round_robin
338
+
339
+ </details>
340
+
341
+ ### Training Logs
342
+ | Epoch | Step | Training Loss | dev_evaluator_cosine_accuracy | final_evaluator_cosine_accuracy |
343
+ |:------:|:----:|:-------------:|:-----------------------------:|:-------------------------------:|
344
+ | -1 | -1 | - | 0.5451 | - |
345
+ | 0.6739 | 500 | 3.4522 | - | - |
346
+ | 1.3477 | 1000 | 1.8387 | - | - |
347
+ | 2.0216 | 1500 | 1.5216 | - | - |
348
+ | 2.6954 | 2000 | 1.0493 | - | - |
349
+ | 3.3693 | 2500 | 0.8555 | - | - |
350
+ | 4.0431 | 3000 | 0.7493 | - | - |
351
+ | 4.7170 | 3500 | 0.5685 | - | - |
352
+ | 5.3908 | 4000 | 0.503 | - | - |
353
+ | 6.0647 | 4500 | 0.3924 | - | - |
354
+ | 6.7385 | 5000 | 0.3252 | - | - |
355
+ | 7.4124 | 5500 | 0.29 | - | - |
356
+ | -1 | -1 | - | - | 0.8827 |
357
+ | 0.6739 | 500 | 0.3696 | - | - |
358
+ | 1.3477 | 1000 | 0.4362 | - | - |
359
+ | 2.0216 | 1500 | 0.3908 | - | - |
360
+ | 2.6954 | 2000 | 0.2616 | - | - |
361
+ | 3.3693 | 2500 | 0.2105 | - | - |
362
+ | 4.0431 | 3000 | 0.1877 | - | - |
363
+ | 4.7170 | 3500 | 0.1406 | - | - |
364
+ | 5.3908 | 4000 | 0.1141 | - | - |
365
+ | 6.0647 | 4500 | 0.1136 | - | - |
366
+ | 6.7385 | 5000 | 0.0708 | - | - |
367
+ | 7.4124 | 5500 | 0.0638 | - | - |
368
+
369
+
370
+ ### Framework Versions
371
+ - Python: 3.11.11
372
+ - Sentence Transformers: 3.4.1
373
+ - Transformers: 4.48.3
374
+ - PyTorch: 2.5.1+cu124
375
+ - Accelerate: 1.3.0
376
+ - Datasets: 3.3.2
377
+ - Tokenizers: 0.21.0
378
+
379
+ ## Citation
380
+
381
+ ### BibTeX
382
+
383
+ #### Sentence Transformers
384
+ ```bibtex
385
+ @inproceedings{reimers-2019-sentence-bert,
386
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
387
+ author = "Reimers, Nils and Gurevych, Iryna",
388
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
389
+ month = "11",
390
+ year = "2019",
391
+ publisher = "Association for Computational Linguistics",
392
+ url = "https://arxiv.org/abs/1908.10084",
393
+ }
394
+ ```
395
+
396
+ #### TripletLoss
397
+ ```bibtex
398
+ @misc{hermans2017defense,
399
+ title={In Defense of the Triplet Loss for Person Re-Identification},
400
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
401
+ year={2017},
402
+ eprint={1703.07737},
403
+ archivePrefix={arXiv},
404
+ primaryClass={cs.CV}
405
+ }
406
+ ```
407
+
408
+ <!--
409
+ ## Glossary
410
+
411
+ *Clearly define terms in order to be accessible across audiences.*
412
+ -->
413
+
414
+ <!--
415
+ ## Model Card Authors
416
+
417
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
418
+ -->
419
+
420
+ <!--
421
+ ## Model Card Contact
422
+
423
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
424
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/chatbot_sentence-transformer",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.2,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.2,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.48.3",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1df4d948ee9b8053d5e7bc17e2fbecfbb3b93f8da084925683f8e81e30099c33
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 128,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff