niks-salodkar commited on
Commit
d18d44d
·
1 Parent(s): 0a1c2fa

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.90 +/- 1.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58270144b91aeea7543fad65d1dd37d5aea8212e245de387ab981098f08bae91
3
+ size 108028
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f000b4d9e50>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f000b4da940>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679218697562161384,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAglQQPz0hmz7F7N2+zZeqP5D3Ej/8cM+9j/zFP/5sqT5DH/A+vRezv9QofD9lQKC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]]",
60
+ "desired_goal": "[[ 0.5637895 0.30298796 -0.43344703]\n [ 1.3327576 0.57409 -0.10128972]\n [ 1.54677 0.33090967 0.4689885 ]\n [-1.3991619 0.984998 -1.2519652 ]]",
61
+ "observation": "[[ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyXOiPS0gTj2FJWc+maoWPsQJcj09PBo9lCTju1Qh9b3TKhY+QSA7PUTI0z3AsEQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.07932241 0.05032365 0.22572906]\n [ 0.14713515 0.05909134 0.0376551 ]\n [-0.00693185 -0.11969247 0.14664774]\n [ 0.04568506 0.10340932 0.1920805 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX2HB/YAHCMCUhpRSlIwBbJRLMowBdJRHQKcTx5ckdFR1fZQoaAZoCWgPQwjItaFinF8EwJSGlFKUaBVLMmgWR0CnE4tXxOLzdX2UKGgGaAloD0MIRu9UwD3PA8CUhpRSlGgVSzJoFkdApxNPNA1NxnV9lChoBmgJaA9DCFRW0/VEBxLAlIaUUpRoFUsyaBZHQKcTFEbYK6Z1fZQoaAZoCWgPQwiHbvYHym0AwJSGlFKUaBVLMmgWR0CnFNvf8/D+dX2UKGgGaAloD0MIGmoUksyKAcCUhpRSlGgVSzJoFkdApxSflEJBxHV9lChoBmgJaA9DCOyH2GDhJBLAlIaUUpRoFUsyaBZHQKcUY5EMLF51fZQoaAZoCWgPQwhszOuIQxYGwJSGlFKUaBVLMmgWR0CnFCik43m3dX2UKGgGaAloD0MISzrKwWziBMCUhpRSlGgVSzJoFkdApxXrWCmMwXV9lChoBmgJaA9DCKWHodXJ6RLAlIaUUpRoFUsyaBZHQKcVrvPTodN1fZQoaAZoCWgPQwhP5bSn5JwAwJSGlFKUaBVLMmgWR0CnFXKQRwqBdX2UKGgGaAloD0MIBygNNQqJAMCUhpRSlGgVSzJoFkdApxU3hZQpF3V9lChoBmgJaA9DCLhX5q26TgXAlIaUUpRoFUsyaBZHQKcW+PBi1At1fZQoaAZoCWgPQwhRFr6+1pUSwJSGlFKUaBVLMmgWR0CnFryzHCGfdX2UKGgGaAloD0MIa378pUWdDMCUhpRSlGgVSzJoFkdApxaAj8k2P3V9lChoBmgJaA9DCEsC1NSyFRbAlIaUUpRoFUsyaBZHQKcWRXGwRoR1fZQoaAZoCWgPQwi7Qh8sY1MQwJSGlFKUaBVLMmgWR0CnGAp48loldX2UKGgGaAloD0MILAyR09fTAcCUhpRSlGgVSzJoFkdApxfOLYPGyXV9lChoBmgJaA9DCIC4q1eRYRPAlIaUUpRoFUsyaBZHQKcXkfvnbIt1fZQoaAZoCWgPQwg/q8yU1v8TwJSGlFKUaBVLMmgWR0CnF1bdznzQdX2UKGgGaAloD0MI5Q0w8x1cB8CUhpRSlGgVSzJoFkdApxki3w1BMXV9lChoBmgJaA9DCIlFDDuMyQjAlIaUUpRoFUsyaBZHQKcY5o7FKkF1fZQoaAZoCWgPQwgtQUZAhWMDwJSGlFKUaBVLMmgWR0CnGKpL/S6UdX2UKGgGaAloD0MIMbQ6OUORBsCUhpRSlGgVSzJoFkdApxhvM4cWCXV9lChoBmgJaA9DCNEGYAMiFBLAlIaUUpRoFUsyaBZHQKcaK9lmOEN1fZQoaAZoCWgPQwi71Aj9TH38v5SGlFKUaBVLMmgWR0CnGe+NkvsadX2UKGgGaAloD0MIx0j2CDXDCMCUhpRSlGgVSzJoFkdApxmy6vq1PXV9lChoBmgJaA9DCKUUdHtJgwTAlIaUUpRoFUsyaBZHQKcZd8IAwPB1fZQoaAZoCWgPQwhOJQNAFbcGwJSGlFKUaBVLMmgWR0CnGz6nzg/DdX2UKGgGaAloD0MIAtcVM8I7CMCUhpRSlGgVSzJoFkdApxsCvHLidnV9lChoBmgJaA9DCAWiJ2VSw/q/lIaUUpRoFUsyaBZHQKcaxp6hQFd1fZQoaAZoCWgPQwi3Konsg/wRwJSGlFKUaBVLMmgWR0CnGouhsZYQdX2UKGgGaAloD0MIV1uxv+yeDcCUhpRSlGgVSzJoFkdApxxGOU+s5nV9lChoBmgJaA9DCKkz95DwPf6/lIaUUpRoFUsyaBZHQKccCfSx7iR1fZQoaAZoCWgPQwhJL2r3q0AMwJSGlFKUaBVLMmgWR0CnG82gOBlMdX2UKGgGaAloD0MIavmBqzzhD8CUhpRSlGgVSzJoFkdApxuSQo1DSnV9lChoBmgJaA9DCOrnTUUq7ATAlIaUUpRoFUsyaBZHQKcdXBfrrxB1fZQoaAZoCWgPQwisONVamGUBwJSGlFKUaBVLMmgWR0CnHR/dAPd3dX2UKGgGaAloD0MIgXueP20UBsCUhpRSlGgVSzJoFkdApxzjfek563V9lChoBmgJaA9DCL5KPnYXGBHAlIaUUpRoFUsyaBZHQKccqHDaXa91fZQoaAZoCWgPQwgbDksDPyoAwJSGlFKUaBVLMmgWR0CnHlY/Vy3kdX2UKGgGaAloD0MIa2PshJdQHMCUhpRSlGgVSzJoFkdApx4Zu63AmHV9lChoBmgJaA9DCKg2OBH9mgXAlIaUUpRoFUsyaBZHQKcd3YL9deJ1fZQoaAZoCWgPQwihndMs0G7+v5SGlFKUaBVLMmgWR0CnHaIsiB5HdX2UKGgGaAloD0MI+yE2WDiJ/r+UhpRSlGgVSzJoFkdApx9UgIQe3nV9lChoBmgJaA9DCDdQ4J18WhrAlIaUUpRoFUsyaBZHQKcfF/wRXfZ1fZQoaAZoCWgPQwibBG9IoyIHwJSGlFKUaBVLMmgWR0CnHtvHLidbdX2UKGgGaAloD0MIhNcubTiMDMCUhpRSlGgVSzJoFkdApx6gmE4//3V9lChoBmgJaA9DCHl4z4HliAPAlIaUUpRoFUsyaBZHQKcgQbobGWF1fZQoaAZoCWgPQwhDBBxClWoSwJSGlFKUaBVLMmgWR0CnIAVJDmbLdX2UKGgGaAloD0MIhiFy+nqOGcCUhpRSlGgVSzJoFkdApx/I+W4Vh3V9lChoBmgJaA9DCKkT0ETYUB/AlIaUUpRoFUsyaBZHQKcfjd3Sro51fZQoaAZoCWgPQwjdQlciUH0HwJSGlFKUaBVLMmgWR0CnIUiZv1lHdX2UKGgGaAloD0MI8SvWcJFrGMCUhpRSlGgVSzJoFkdApyEL+1jRUnV9lChoBmgJaA9DCBu7RPXWMBnAlIaUUpRoFUsyaBZHQKcgz2alUId1fZQoaAZoCWgPQwiHNZVFYVcBwJSGlFKUaBVLMmgWR0CnIJRNIsiCdX2UKGgGaAloD0MIQPm7d9SoEsCUhpRSlGgVSzJoFkdApyJF25hBq3V9lChoBmgJaA9DCM9m1edqKw/AlIaUUpRoFUsyaBZHQKciCZlWfbt1fZQoaAZoCWgPQwh8CoDxDPoEwJSGlFKUaBVLMmgWR0CnIc0u14PgdX2UKGgGaAloD0MIJuSDns0q/b+UhpRSlGgVSzJoFkdApyGSP2f03HV9lChoBmgJaA9DCN5Wem02dgHAlIaUUpRoFUsyaBZHQKcjXyvs7dV1fZQoaAZoCWgPQwinyYy3lZ4MwJSGlFKUaBVLMmgWR0CnIyODaoMsdX2UKGgGaAloD0MI+N7foL36E8CUhpRSlGgVSzJoFkdApyLnryDqW3V9lChoBmgJaA9DCM2TawpkNhXAlIaUUpRoFUsyaBZHQKcirXnQpnZ1fZQoaAZoCWgPQwh0et6NBUUHwJSGlFKUaBVLMmgWR0CnJO+nQ6ZIdX2UKGgGaAloD0MIgO7Lme2KFsCUhpRSlGgVSzJoFkdApySz1dxAB3V9lChoBmgJaA9DCDhqhel7DQfAlIaUUpRoFUsyaBZHQKckeCJ40Mx1fZQoaAZoCWgPQwh9IeS8/w8IwJSGlFKUaBVLMmgWR0CnJD3VLBbfdX2UKGgGaAloD0MIWB6kp8hh+L+UhpRSlGgVSzJoFkdApyaw91U2k3V9lChoBmgJaA9DCIKPwYpTrQjAlIaUUpRoFUsyaBZHQKcmdVktmL91fZQoaAZoCWgPQwgSwqONI5YDwJSGlFKUaBVLMmgWR0CnJjn1OCXhdX2UKGgGaAloD0MIkSxgArfuD8CUhpRSlGgVSzJoFkdApyX/2/SH/XV9lChoBmgJaA9DCCXpmsk3KxfAlIaUUpRoFUsyaBZHQKcoJr56+nJ1fZQoaAZoCWgPQwhmhLcHIWD+v5SGlFKUaBVLMmgWR0CnJ+rGipNsdX2UKGgGaAloD0MIWmd8X1zqG8CUhpRSlGgVSzJoFkdApyeu4y44InV9lChoBmgJaA9DCAk02NR59ALAlIaUUpRoFUsyaBZHQKcndCw8nu11fZQoaAZoCWgPQwi8BRIUPwYPwJSGlFKUaBVLMmgWR0CnKb1ndweedX2UKGgGaAloD0MIucK7XMT3CsCUhpRSlGgVSzJoFkdApymBtix3V3V9lChoBmgJaA9DCMKlY84zviDAlIaUUpRoFUsyaBZHQKcpRanrIHV1fZQoaAZoCWgPQwgQH9jxX8AJwJSGlFKUaBVLMmgWR0CnKQtg0CRwdX2UKGgGaAloD0MIbEJaY9DpAMCUhpRSlGgVSzJoFkdApytP5nDiwXV9lChoBmgJaA9DCKio+pXOpw/AlIaUUpRoFUsyaBZHQKcrFFVDKHR1fZQoaAZoCWgPQwjizK/mAHEgwJSGlFKUaBVLMmgWR0CnKtisGPgfdX2UKGgGaAloD0MIN9+I7lk3EMCUhpRSlGgVSzJoFkdApyqeH1vl2nV9lChoBmgJaA9DCEFmZ9E7xSHAlIaUUpRoFUsyaBZHQKcszjtoi9t1fZQoaAZoCWgPQwiJRQw7jOkdwJSGlFKUaBVLMmgWR0CnLJJKJ2t/dX2UKGgGaAloD0MIDkxuFFmLBsCUhpRSlGgVSzJoFkdApyxW5tm+TXV9lChoBmgJaA9DCLFR1m8mlhfAlIaUUpRoFUsyaBZHQKcsHHAh0Qt1fZQoaAZoCWgPQwjpSZnU0HYZwJSGlFKUaBVLMmgWR0CnLfcjzI3jdX2UKGgGaAloD0MIDaoNTkRfGsCUhpRSlGgVSzJoFkdApy26gsbvPXV9lChoBmgJaA9DCB2Txf1HhgbAlIaUUpRoFUsyaBZHQKctfkWhysF1fZQoaAZoCWgPQwiP/wJBgEwEwJSGlFKUaBVLMmgWR0CnLUMzVMEidX2UKGgGaAloD0MIPl3dsdjmBcCUhpRSlGgVSzJoFkdApy77x7RfGHV9lChoBmgJaA9DCKIL6lvmlAHAlIaUUpRoFUsyaBZHQKcuv47A+IN1fZQoaAZoCWgPQwhEM0+uKXANwJSGlFKUaBVLMmgWR0CnLoNTDO1OdX2UKGgGaAloD0MICRnIs8tHFMCUhpRSlGgVSzJoFkdApy5IAsCkoHV9lChoBmgJaA9DCHEceLXcWRLAlIaUUpRoFUsyaBZHQKcwH4gzP8h1fZQoaAZoCWgPQwiOWfYksJkDwJSGlFKUaBVLMmgWR0CnL+MrmQr+dX2UKGgGaAloD0MI4PWZsz7lDcCUhpRSlGgVSzJoFkdApy+m3Sa3JHV9lChoBmgJaA9DCESIK2fvjALAlIaUUpRoFUsyaBZHQKcva7FsHjZ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e593403c3aeff2f30c10a7c38a6188e79afca80f43bc6723eabf9d4b94852a3
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b95c7e67f432a95c5c02a4e7bce43c9efd6b620e94361c19272bba4d89782f6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f000b4d9e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f000b4da940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679218697562161384, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/dlDfPnAP0rsJIRM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAglQQPz0hmz7F7N2+zZeqP5D3Ej/8cM+9j/zFP/5sqT5DH/A+vRezv9QofD9lQKC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzx2UN8+cA/SuwkhEz/ttg08iQJ/u7TfBzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]\n [ 0.43616074 -0.00641053 0.5747228 ]]", "desired_goal": "[[ 0.5637895 0.30298796 -0.43344703]\n [ 1.3327576 0.57409 -0.10128972]\n [ 1.54677 0.33090967 0.4689885 ]\n [-1.3991619 0.984998 -1.2519652 ]]", "observation": "[[ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]\n [ 0.43616074 -0.00641053 0.5747228 0.00864957 -0.00389114 0.00829308]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyXOiPS0gTj2FJWc+maoWPsQJcj09PBo9lCTju1Qh9b3TKhY+QSA7PUTI0z3AsEQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07932241 0.05032365 0.22572906]\n [ 0.14713515 0.05909134 0.0376551 ]\n [-0.00693185 -0.11969247 0.14664774]\n [ 0.04568506 0.10340932 0.1920805 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX2HB/YAHCMCUhpRSlIwBbJRLMowBdJRHQKcTx5ckdFR1fZQoaAZoCWgPQwjItaFinF8EwJSGlFKUaBVLMmgWR0CnE4tXxOLzdX2UKGgGaAloD0MIRu9UwD3PA8CUhpRSlGgVSzJoFkdApxNPNA1NxnV9lChoBmgJaA9DCFRW0/VEBxLAlIaUUpRoFUsyaBZHQKcTFEbYK6Z1fZQoaAZoCWgPQwiHbvYHym0AwJSGlFKUaBVLMmgWR0CnFNvf8/D+dX2UKGgGaAloD0MIGmoUksyKAcCUhpRSlGgVSzJoFkdApxSflEJBxHV9lChoBmgJaA9DCOyH2GDhJBLAlIaUUpRoFUsyaBZHQKcUY5EMLF51fZQoaAZoCWgPQwhszOuIQxYGwJSGlFKUaBVLMmgWR0CnFCik43m3dX2UKGgGaAloD0MISzrKwWziBMCUhpRSlGgVSzJoFkdApxXrWCmMwXV9lChoBmgJaA9DCKWHodXJ6RLAlIaUUpRoFUsyaBZHQKcVrvPTodN1fZQoaAZoCWgPQwhP5bSn5JwAwJSGlFKUaBVLMmgWR0CnFXKQRwqBdX2UKGgGaAloD0MIBygNNQqJAMCUhpRSlGgVSzJoFkdApxU3hZQpF3V9lChoBmgJaA9DCLhX5q26TgXAlIaUUpRoFUsyaBZHQKcW+PBi1At1fZQoaAZoCWgPQwhRFr6+1pUSwJSGlFKUaBVLMmgWR0CnFryzHCGfdX2UKGgGaAloD0MIa378pUWdDMCUhpRSlGgVSzJoFkdApxaAj8k2P3V9lChoBmgJaA9DCEsC1NSyFRbAlIaUUpRoFUsyaBZHQKcWRXGwRoR1fZQoaAZoCWgPQwi7Qh8sY1MQwJSGlFKUaBVLMmgWR0CnGAp48loldX2UKGgGaAloD0MILAyR09fTAcCUhpRSlGgVSzJoFkdApxfOLYPGyXV9lChoBmgJaA9DCIC4q1eRYRPAlIaUUpRoFUsyaBZHQKcXkfvnbIt1fZQoaAZoCWgPQwg/q8yU1v8TwJSGlFKUaBVLMmgWR0CnF1bdznzQdX2UKGgGaAloD0MI5Q0w8x1cB8CUhpRSlGgVSzJoFkdApxki3w1BMXV9lChoBmgJaA9DCIlFDDuMyQjAlIaUUpRoFUsyaBZHQKcY5o7FKkF1fZQoaAZoCWgPQwgtQUZAhWMDwJSGlFKUaBVLMmgWR0CnGKpL/S6UdX2UKGgGaAloD0MIMbQ6OUORBsCUhpRSlGgVSzJoFkdApxhvM4cWCXV9lChoBmgJaA9DCNEGYAMiFBLAlIaUUpRoFUsyaBZHQKcaK9lmOEN1fZQoaAZoCWgPQwi71Aj9TH38v5SGlFKUaBVLMmgWR0CnGe+NkvsadX2UKGgGaAloD0MIx0j2CDXDCMCUhpRSlGgVSzJoFkdApxmy6vq1PXV9lChoBmgJaA9DCKUUdHtJgwTAlIaUUpRoFUsyaBZHQKcZd8IAwPB1fZQoaAZoCWgPQwhOJQNAFbcGwJSGlFKUaBVLMmgWR0CnGz6nzg/DdX2UKGgGaAloD0MIAtcVM8I7CMCUhpRSlGgVSzJoFkdApxsCvHLidnV9lChoBmgJaA9DCAWiJ2VSw/q/lIaUUpRoFUsyaBZHQKcaxp6hQFd1fZQoaAZoCWgPQwi3Konsg/wRwJSGlFKUaBVLMmgWR0CnGouhsZYQdX2UKGgGaAloD0MIV1uxv+yeDcCUhpRSlGgVSzJoFkdApxxGOU+s5nV9lChoBmgJaA9DCKkz95DwPf6/lIaUUpRoFUsyaBZHQKccCfSx7iR1fZQoaAZoCWgPQwhJL2r3q0AMwJSGlFKUaBVLMmgWR0CnG82gOBlMdX2UKGgGaAloD0MIavmBqzzhD8CUhpRSlGgVSzJoFkdApxuSQo1DSnV9lChoBmgJaA9DCOrnTUUq7ATAlIaUUpRoFUsyaBZHQKcdXBfrrxB1fZQoaAZoCWgPQwisONVamGUBwJSGlFKUaBVLMmgWR0CnHR/dAPd3dX2UKGgGaAloD0MIgXueP20UBsCUhpRSlGgVSzJoFkdApxzjfek563V9lChoBmgJaA9DCL5KPnYXGBHAlIaUUpRoFUsyaBZHQKccqHDaXa91fZQoaAZoCWgPQwgbDksDPyoAwJSGlFKUaBVLMmgWR0CnHlY/Vy3kdX2UKGgGaAloD0MIa2PshJdQHMCUhpRSlGgVSzJoFkdApx4Zu63AmHV9lChoBmgJaA9DCKg2OBH9mgXAlIaUUpRoFUsyaBZHQKcd3YL9deJ1fZQoaAZoCWgPQwihndMs0G7+v5SGlFKUaBVLMmgWR0CnHaIsiB5HdX2UKGgGaAloD0MI+yE2WDiJ/r+UhpRSlGgVSzJoFkdApx9UgIQe3nV9lChoBmgJaA9DCDdQ4J18WhrAlIaUUpRoFUsyaBZHQKcfF/wRXfZ1fZQoaAZoCWgPQwibBG9IoyIHwJSGlFKUaBVLMmgWR0CnHtvHLidbdX2UKGgGaAloD0MIhNcubTiMDMCUhpRSlGgVSzJoFkdApx6gmE4//3V9lChoBmgJaA9DCHl4z4HliAPAlIaUUpRoFUsyaBZHQKcgQbobGWF1fZQoaAZoCWgPQwhDBBxClWoSwJSGlFKUaBVLMmgWR0CnIAVJDmbLdX2UKGgGaAloD0MIhiFy+nqOGcCUhpRSlGgVSzJoFkdApx/I+W4Vh3V9lChoBmgJaA9DCKkT0ETYUB/AlIaUUpRoFUsyaBZHQKcfjd3Sro51fZQoaAZoCWgPQwjdQlciUH0HwJSGlFKUaBVLMmgWR0CnIUiZv1lHdX2UKGgGaAloD0MI8SvWcJFrGMCUhpRSlGgVSzJoFkdApyEL+1jRUnV9lChoBmgJaA9DCBu7RPXWMBnAlIaUUpRoFUsyaBZHQKcgz2alUId1fZQoaAZoCWgPQwiHNZVFYVcBwJSGlFKUaBVLMmgWR0CnIJRNIsiCdX2UKGgGaAloD0MIQPm7d9SoEsCUhpRSlGgVSzJoFkdApyJF25hBq3V9lChoBmgJaA9DCM9m1edqKw/AlIaUUpRoFUsyaBZHQKciCZlWfbt1fZQoaAZoCWgPQwh8CoDxDPoEwJSGlFKUaBVLMmgWR0CnIc0u14PgdX2UKGgGaAloD0MIJuSDns0q/b+UhpRSlGgVSzJoFkdApyGSP2f03HV9lChoBmgJaA9DCN5Wem02dgHAlIaUUpRoFUsyaBZHQKcjXyvs7dV1fZQoaAZoCWgPQwinyYy3lZ4MwJSGlFKUaBVLMmgWR0CnIyODaoMsdX2UKGgGaAloD0MI+N7foL36E8CUhpRSlGgVSzJoFkdApyLnryDqW3V9lChoBmgJaA9DCM2TawpkNhXAlIaUUpRoFUsyaBZHQKcirXnQpnZ1fZQoaAZoCWgPQwh0et6NBUUHwJSGlFKUaBVLMmgWR0CnJO+nQ6ZIdX2UKGgGaAloD0MIgO7Lme2KFsCUhpRSlGgVSzJoFkdApySz1dxAB3V9lChoBmgJaA9DCDhqhel7DQfAlIaUUpRoFUsyaBZHQKckeCJ40Mx1fZQoaAZoCWgPQwh9IeS8/w8IwJSGlFKUaBVLMmgWR0CnJD3VLBbfdX2UKGgGaAloD0MIWB6kp8hh+L+UhpRSlGgVSzJoFkdApyaw91U2k3V9lChoBmgJaA9DCIKPwYpTrQjAlIaUUpRoFUsyaBZHQKcmdVktmL91fZQoaAZoCWgPQwgSwqONI5YDwJSGlFKUaBVLMmgWR0CnJjn1OCXhdX2UKGgGaAloD0MIkSxgArfuD8CUhpRSlGgVSzJoFkdApyX/2/SH/XV9lChoBmgJaA9DCCXpmsk3KxfAlIaUUpRoFUsyaBZHQKcoJr56+nJ1fZQoaAZoCWgPQwhmhLcHIWD+v5SGlFKUaBVLMmgWR0CnJ+rGipNsdX2UKGgGaAloD0MIWmd8X1zqG8CUhpRSlGgVSzJoFkdApyeu4y44InV9lChoBmgJaA9DCAk02NR59ALAlIaUUpRoFUsyaBZHQKcndCw8nu11fZQoaAZoCWgPQwi8BRIUPwYPwJSGlFKUaBVLMmgWR0CnKb1ndweedX2UKGgGaAloD0MIucK7XMT3CsCUhpRSlGgVSzJoFkdApymBtix3V3V9lChoBmgJaA9DCMKlY84zviDAlIaUUpRoFUsyaBZHQKcpRanrIHV1fZQoaAZoCWgPQwgQH9jxX8AJwJSGlFKUaBVLMmgWR0CnKQtg0CRwdX2UKGgGaAloD0MIbEJaY9DpAMCUhpRSlGgVSzJoFkdApytP5nDiwXV9lChoBmgJaA9DCKio+pXOpw/AlIaUUpRoFUsyaBZHQKcrFFVDKHR1fZQoaAZoCWgPQwjizK/mAHEgwJSGlFKUaBVLMmgWR0CnKtisGPgfdX2UKGgGaAloD0MIN9+I7lk3EMCUhpRSlGgVSzJoFkdApyqeH1vl2nV9lChoBmgJaA9DCEFmZ9E7xSHAlIaUUpRoFUsyaBZHQKcszjtoi9t1fZQoaAZoCWgPQwiJRQw7jOkdwJSGlFKUaBVLMmgWR0CnLJJKJ2t/dX2UKGgGaAloD0MIDkxuFFmLBsCUhpRSlGgVSzJoFkdApyxW5tm+TXV9lChoBmgJaA9DCLFR1m8mlhfAlIaUUpRoFUsyaBZHQKcsHHAh0Qt1fZQoaAZoCWgPQwjpSZnU0HYZwJSGlFKUaBVLMmgWR0CnLfcjzI3jdX2UKGgGaAloD0MIDaoNTkRfGsCUhpRSlGgVSzJoFkdApy26gsbvPXV9lChoBmgJaA9DCB2Txf1HhgbAlIaUUpRoFUsyaBZHQKctfkWhysF1fZQoaAZoCWgPQwiP/wJBgEwEwJSGlFKUaBVLMmgWR0CnLUMzVMEidX2UKGgGaAloD0MIPl3dsdjmBcCUhpRSlGgVSzJoFkdApy77x7RfGHV9lChoBmgJaA9DCKIL6lvmlAHAlIaUUpRoFUsyaBZHQKcuv47A+IN1fZQoaAZoCWgPQwhEM0+uKXANwJSGlFKUaBVLMmgWR0CnLoNTDO1OdX2UKGgGaAloD0MICRnIs8tHFMCUhpRSlGgVSzJoFkdApy5IAsCkoHV9lChoBmgJaA9DCHEceLXcWRLAlIaUUpRoFUsyaBZHQKcwH4gzP8h1fZQoaAZoCWgPQwiOWfYksJkDwJSGlFKUaBVLMmgWR0CnL+MrmQr+dX2UKGgGaAloD0MI4PWZsz7lDcCUhpRSlGgVSzJoFkdApy+m3Sa3JHV9lChoBmgJaA9DCESIK2fvjALAlIaUUpRoFUsyaBZHQKcva7FsHjZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (779 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.90132879933808, "std_reward": 1.3413981874696772, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-19T10:29:07.949088"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b25230fa4d2a534adbc88c224edb7722c3879cd3a1a63913087a8226f332ce8
3
+ size 3056