File size: 18,008 Bytes
c865888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.distributions import OneHotCategorical
from transformers.optimization import Adafactor
# PL functions
import pytorch_lightning as pl
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import EarlyStopping
import functools
import math
#from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import (
size_based_auto_wrap_policy,
enable_wrap,
wrap
)
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam
from sklearn.model_selection import train_test_split
from Stage3_source.DSEma import moving_average, clone_zero_model
import Stage3_source.transformer_training_helper as trainer_tools
import Stage3_source.helper_funcs as helper_tools
import Stage3_source.eval_metrics as eval_funcs
import Stage3_source.preprocess as prep
import copy
from torch.utils.data import DataLoader
import pandas as pd
from transformers import get_cosine_schedule_with_warmup
class PL_ProtARDM(pl.LightningModule):
def __init__(
self,
args: any,
model: nn.Module,
#ema_model: nn.Module,
):
super().__init__()
#self.save_hyperparameters()
# arguments
self.script_args = args
# the whole model
self.model = model
#self.ema_model = ema_model
#clone_zero_model(self.model, self.ema_model, zero_stage=3)
##self.ema_model = copy.deepcopy(self.model)
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
y_c: torch.Tensor,
ema=False,
) -> torch.Tensor:
if ema:
logits = self.ema_model(x=x, t=t.view(-1,), y_c=y_c)
else:
logits = self.model(x=x, t=t.view(-1,), y_c=y_c)
return logits
#return F.softmax(logits, dim=1)
#def on_train_batch_end(self, *args, **kwargs):
# clone_zero_model(self.model, self.ema_model, zero_stage=3)
# #moving_average(self.model, self.ema_model, beta=0.0, zero_stage=3)
def configure_optimizers(self, ):
if self.script_args.choose_optim == 'AdamW':
if isinstance(self, FSDP):
print("Enter FSDP")
optimizer = torch.optim.AdamW(self.parameters(), lr=self.script_args.lr, weight_decay=self.script_args.weight_decay)
else:
optimizer = torch.optim.AdamW(self.parameters(), lr=self.script_args.lr, weight_decay=self.script_args.weight_decay)
elif self.script_args.choose_optim == 'AdaFactor':
optimizer = Adafactor(self.parameters(), lr=self.script_args.lr, weight_decay=self.script_args.weight_decay, relative_step=False)
elif self.script_args.choose_optim == 'Adam':
optimizer = torch.optim.Adam(self.parameters(), lr=self.script_args.lr)
elif self.script_args.choose_optim == 'DeepSpeedCPUAdam':
optimizer = DeepSpeedCPUAdam(self.parameters(), lr=self.script_args.lr, weight_decay=self.script_args.weight_decay)
if self.script_args.scheduler_gamma is not None:
if isinstance(self.script_args.scheduler_gamma, str):
if 'coswarmup' == self.script_args.scheduler_gamma.lower():
print(f'Using cossine warmup scheduler with decay')
num_warmup_steps=self.script_args.traindata_len
num_training_steps=self.script_args.traindata_len*self.script_args.epochs
print(f'Num_warmup_steps={num_warmup_steps}')
print(f'Num_training_steps={num_training_steps}')
def _get_cosine_schedule_with_warmup_lr_lambda(
current_step: int, num_warmup_steps: int, num_training_steps: int, num_cycles: float
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
lr_lambda = functools.partial(
_get_cosine_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=0.5,
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1),
"interval": "step",
},
}
#return {
# "optimizer": optimizer,
# "lr_scheduler": {
# "scheduler": get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps),
# "interval": "step",
# },
#}
else:
print(f'Using Exponential learning rate decay / epoch with factor: {self.script_args.scheduler_gamma}')
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": optim.lr_scheduler.ExponentialLR(optimizer, gamma=self.script_args.scheduler_gamma, verbose=True),
"interval": "epoch",
},
}
else:
return optimizer
#else:
# print("Please make choose_option variable from these options: 'AdamW', 'AdaFactor', 'Adam', 'DeepSpeedCPUAdam'")
def common_step(
self,
realization: torch.Tensor,
realization_idx: any,
stage: str) -> dict:
if isinstance(realization, list):
# class labels
y_c = realization[1]#.long()
# input samples
realization = realization[0]
batch_size, seq_length = realization.size()
realization = realization.reshape(batch_size, 1, seq_length).long()
train_tuple = self.cond_elbo_objective(
realization=realization,
y_c=y_c,
realization_idx=realization_idx,
stage=stage,
ema=True if 'ema' in stage.lower() else False,
)
if len(train_tuple) == 1:
loss = train_tuple[0]
else:
loss = train_tuple[0]
metrics = train_tuple[1]
if realization_idx == 0:
gpu_memory_usage = helper_tools.print_gpu_initialization()
self.log(f"{stage}_gpu_memory_usage", gpu_memory_usage, sync_dist=True)
sync_dist = True if 'val' in stage else False
# track loss
self.log(f"{stage}_loss", loss, prog_bar=True, on_step=True, on_epoch=True, sync_dist=sync_dist)
# track performance metrics
if len(train_tuple) > 1:
self.log(f"{stage}_prev_hard_acc", metrics[0], prog_bar=True, on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_prev_soft_acc", metrics[1], on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_fut_hard_acc", metrics[2], prog_bar=True, on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_fut_soft_acc", metrics[3], on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_current_hard_acc", metrics[4], prog_bar=True, on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_current_soft_acc", metrics[5], on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_current_ppl", metrics[6], on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_prev_ppl", metrics[7], on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_fut_ppl", metrics[8], on_step=True, on_epoch=True, sync_dist=sync_dist)
self.log(f"{stage}_pos_entropy", metrics[9], on_step=True, on_epoch=True, sync_dist=sync_dist)
torch.cuda.empty_cache()
return {'loss': loss}
def training_step(
self,
realization: torch.Tensor,
realization_idx: any):
return self.common_step(realization, realization_idx, stage='train')
def validation_step(
self,
realization: torch.Tensor,
realization_idx: any):
self.common_step(realization, realization_idx, stage='val')
#self.common_step(realization, realization_idx, stage='EMA_val')
def apply_OneHotCat(self, probs: torch.Tensor) -> any:
return OneHotCategorical(probs=probs.permute(0,2,1))
#return OneHotCategorical(probs=F.softmax(probs.permute(0,2,1), dim=-1))
def cond_elbo_objective(
self,
realization: torch.Tensor,
y_c: torch.Tensor,
realization_idx: any,
stage: str,
ema=False,
):
bs, channel, seq_length = realization.size()
# get a batch of random sampling paths
sampled_random_path = trainer_tools.sample_random_path(bs, seq_length, device=self.script_args.device)
# sample a set of random smapling steps for each individual training sequences in the current batch
idx = trainer_tools.sample_random_index_for_sampling(bs, seq_length, device=self.script_args.device, option='random')
# we create a mask that masks the location were we've already sampled
random_path_mask = trainer_tools.create_mask_at_random_path_index(sampled_random_path, idx, bs, seq_length)
# create a mask that masks the location where we are currently sampling
current_path_mask = trainer_tools.create_sampling_location_mask(sampled_random_path, idx, bs, seq_length)
# future sampling locations (i.e. >t)
future_path_mask = trainer_tools.create_mask_at_future_path_index(sampled_random_path, idx, bs, seq_length)
# tokenize realization
real_tokens, bs, seq_length = trainer_tools.create_token_labels(self.script_args, realization)
#real_tokens = realization.clone().squeeze(1)
# mask realizations
real_token_masked = trainer_tools.mask_realizations(real_tokens, random_path_mask)
# conditional probs
#probs = self(x=real_token_masked, t=idx, y_c=y_c, ema=ema)
logits = self(x=real_token_masked, t=idx, y_c=y_c, ema=ema)
conditional_prob = OneHotCategorical(logits=logits.permute(0,2,1))
#conditional_prob = self.apply_OneHotCat(probs=probs)
# evaluate the value of the log prob for the given realization
log_prob = trainer_tools.log_prob_of_realization(self.script_args, conditional_prob, real_tokens)
# compute an average over all the unsampled
#log_prob_unsampled = trainer_tools.log_prob_of_unsampled_locations(log_prob.to(self.script_args.device), real_token_masked.to(self.script_args.device))
log_prob_unsampled = trainer_tools.log_prob_of_unsampled_locations(log_prob, real_token_masked)
#log_prob_unsampled = trainer_tools.log_prob_of_unsampled_locations(log_prob, real_token_masked, real_tokens)
# compute an average loss i.e. negative average log-likelihood over the batch elements
log_prob_weighted = trainer_tools.weight_log_prob(log_prob_unsampled, idx, seq_length)
# compute an average loss i.e. negative average log-likelihood over the batch elements
loss = trainer_tools.compute_average_loss_for_batch(log_prob_weighted)
#if 'val' in stage:
probs = F.softmax(logits, dim=1)
metrics = self.performance_step(
real_tokens=real_tokens.cpu(),
idx=idx.cpu(),
sampled_random_path=sampled_random_path.cpu().float(),
probs=probs.cpu().float(),
conditional_prob=conditional_prob)
return loss, metrics
# return loss,
@torch.no_grad()
def performance_step(
self,
real_tokens: torch.Tensor,
idx: torch.Tensor,
sampled_random_path: torch.Tensor,
probs: torch.Tensor,
conditional_prob: torch.Tensor
) -> tuple:
# create numerical token sequence
sample_seq = torch.argmax(trainer_tools.sample_from_conditional(conditional_prob).cpu(), dim=1)
# eval prev positions in terms of time
prev_B_hard_acc, prev_B_soft_acc, fut_B_hard_acc, fut_B_soft_acc, current_B_hard_acc, current_B_soft_acc = eval_funcs.compute_acc_given_time_pos(
real_tokens=real_tokens,
sample_seq=sample_seq,
sample_path=sampled_random_path,
idx=idx
)
# compute ppl given time position
current_ppl, prev_ppl, fut_ppl = eval_funcs.compute_ppl_given_time_pos(
probs=probs,
sample_path=sampled_random_path,
idx=idx
)
# average positional entropy
pos_entropy = trainer_tools.compute_pos_entropy(probs=probs).mean().item()
metric_evals = (
prev_B_hard_acc,
prev_B_soft_acc,
fut_B_hard_acc,
fut_B_soft_acc,
current_B_hard_acc,
current_B_soft_acc,
current_ppl,
prev_ppl,
fut_ppl,
pos_entropy
)
return metric_evals
class PFamDataModule(pl.LightningDataModule):
def __init__(self, args):
super().__init__()
self.args = args
#df = pd.read_csv(args.data_root)
#data = torch.load(args.data_root)
data = self.load_data()
num_seq_list, text_emb_list = prep.prepare_protein_data(
args=args,
data_dict=data
)
print('Performing 80/20 random train/val split')
num_seq_list_train, num_seq_list_val, text_emb_train, text_emb_val = train_test_split(num_seq_list,
text_emb_list,
test_size=args.valid_size,
#stratify=class_label_list,
random_state=args.seed)
print(f'Number of training samples: {len(num_seq_list_train)}')
print(f'Number of validation samples: {len(num_seq_list_val)}')
self.train_dataset = prep.protein_dataset(
num_seq_list=num_seq_list_train,
text_emb=text_emb_train
)
self.val_dataset = prep.protein_dataset(
num_seq_list=num_seq_list_val,
text_emb=text_emb_val
)
def load_data(self):
try:
print(self.args.swissprot_data_root, self.args.pfam_data_root)
if self.args.swissprot_data_root != "None":
swissprot_data = torch.load(self.args.swissprot_data_root)
else:
swissprot_data=None
if self.args.pfam_data_root != "None":
pfam_data = torch.load(self.args.pfam_data_root)
else:
pfam_data=None
if (self.args.swissprot_data_root != "None") and (self.args.pfam_data_root != "None"):
return self.merge_and_append_values(dict1=swissprot_data, dict2=pfam_data)
elif self.args.swissprot_data_root == "None":
return pfam_data
elif self.args.pfam_data_root == "None":
return swissprot_data
else:
raise ValueError('Both SwissProt and Pfam datasets are unavailable.')
except FileNotFoundError as e:
raise FileNotFoundError(f"Data file not found: {e}")
def merge_and_append_values(self, dict1, dict2):
merged_dict = {}
# Combine all keys from both dictionaries
all_keys = set(dict1) | set(dict2)
for key in all_keys:
values = []
if key in dict1:
values.append(dict1[key])
if key in dict2:
values.append(dict2[key])
# Merge values for each key
# This merges lists or appends non-list values
merged_dict[key] = [item for sublist in values for item in (sublist if isinstance(sublist, list) else [sublist])]
return merged_dict
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.args.batch_size,
num_workers=self.args.num_workers,
shuffle=True
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.args.batch_size,
num_workers=self.args.num_workers,
shuffle=False
)
|