BioM3 / Stage3_source /sampling_analysis.py
Niksa Praljak
Add scripts for ProteoScribe Sampling
c865888
raw
history blame
9.29 kB
import os
import numpy as np
import random
import pandas as pd
import math
from tqdm import tqdm
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import Stage3_source.preprocess as prep
import Stage3_source.cond_diff_transformer_layer as mod
import Stage3_source.transformer_training_helper as train_helper
# generate missing pixels with one shot
@torch.no_grad()
def cond_autocomplete_real_samples(
model: nn.Module,
args: any,
realization: torch.Tensor,
y_c: torch.Tensor,
idx: torch.Tensor
) -> (
any,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor
):
model.eval()
bs, channel, seq_length = realization.size()
# get a batch of random sampling paths
sampled_random_path = train_helper.sample_random_path(bs, seq_length, device=args.device)
# create a mask that masks the locations where we've already sampled
random_path_mask = train_helper.create_mask_at_random_path_index(sampled_random_path, idx, bs, seq_length)
# tokenize realizations
real_tokens, bs, seq_length= train_helper.create_token_labels(args, realization)
#real_tokens = realization.clone().squeeze(1)
# mask realizations
real_token_masked = train_helper.mask_realizations(real_tokens, random_path_mask)
# conditional probability
conditional_prob, probs = train_helper.cond_predict_conditional_prob(model, real_token_masked, y_c, idx, args)
# evaluate the value of the log probability for the given realization:
log_prob = train_helper.log_prob_of_realization(args, conditional_prob, real_tokens)
return (
conditional_prob,
probs.cpu(),
real_token_masked.cpu(),
real_tokens.cpu(),
log_prob.cpu(),
sampled_random_path.cpu(),
random_path_mask.cpu()
)
# get the label for the corresponding sequence in the dataloader
def extract_samples_with_labels(
dataloader: DataLoader,
target_labels: int,
total_num: int,
pad_included: bool=False
) -> dict:
extracted_sampled = {
'sample': [],
'label': []
}
for data, labels in dataloader:
for i, label in enumerate(labels):
if label.item() == target_labels:
if pad_included:
pass
else:
data[i] += 1 # account for the absorbing state (i.e. make room)
extracted_sampled['sample'].append(data[i]) # account for abosrbed state
extracted_sampled['label'].append(label)
if len(extracted_sampled['label']) == total_num:
return extracted_sampled
return extracted_sampled
# mask a given percentage of the sample
def corrupt_samples(
args: any,
realization: torch.Tensor,
perc: float
) -> torch.Tensor:
bs, channels, seq_length = realization.size()
# number of samples to corrupt (i.e. idx)
idx = (args.diffusion_steps * torch.Tensor([perc])).to(int).to(args.device)
# get a batch of random sampling paths
sampled_random_path = train_helper.sample_random_path(bs, seq_length, device=args.device)
# we create a mask that masks the locations where we've already sampled
random_path_mask = train_helper.create_mask_at_random_path_index(sampled_random_path, idx, bs, seq_length)
# tokenize realizations
real_tokens, bs, seq_length= train_helper.create_token_labels(args, realization)
# mask realizations
real_token_masked = train_helper.mask_realizations(real_tokens, random_path_mask)
return (
real_token_masked,
sampled_random_path,
idx
)
# inpaint missing regions by predicting the next position
@torch.no_grad()
def predict_next_index(
model: nn.Module,
args: any,
mask_realization: torch.Tensor,
y_c: torch.Tensor,
idx: torch.Tensor
) -> (
any,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor
):
model.eval()
bs, channel, seq_length = mask_realization.size()
# conditional prob
conditional_prob, probs = train_helper.cond_predict_conditional_prob(model, mask_realization.squeeze(1), y_c, idx, args)
return (
conditional_prob,
probs.cpu(),
)
def generate_denoised_sampled(
args: any,
model: nn.Module,
extract_digit_samples: torch.Tensor,
extract_time: torch.Tensor,
extract_digit_label: torch.Tensor,
sampling_path: torch.Tensor
) -> (
list,
list
):
mask_realization_list, time_idx_list = [], []
# prepare data
temp_y_c = extract_digit_label.to(args.device)
temp_mask_realization = extract_digit_samples.unsqueeze(1).long().to(args.device)
temp_idx = torch.Tensor([extract_time]).to(args.device).squeeze(0)
temp_sampling_path = sampling_path.to(args.device)
for ii in tqdm(range(int(temp_idx.item()), args.diffusion_steps)):
# where we need to sample next
current_location = temp_sampling_path == temp_idx
print(current_location.shape)
# make position prediction
conditional_prob, prob = predict_next_index(
model=model,
args=args,
mask_realization=temp_mask_realization,
y_c=temp_y_c,
idx=temp_idx
)
# get the label for the next token position
next_temp_realization = torch.argmax(
conditional_prob.sample(), dim=-1
)
temp_mask_realization[0, current_location] = next_temp_realization[current_location]
mask_realization_list.append(temp_mask_realization.cpu().numpy())
time_idx_list.append(temp_idx.cpu().numpy())
temp_idx+=1
return (
mask_realization_list,
time_idx_list
)
def batch_generate_denoised_sampled(
args: any,
model: nn.Module,
extract_digit_samples: torch.Tensor,
extract_time: torch.Tensor,
extract_digit_label: torch.Tensor,
sampling_path: torch.Tensor
) -> (list, list):
# Ensure batch dimension consistency across input tensors
assert extract_digit_samples.size(0) == extract_digit_label.size(0) == sampling_path.size(0) == extract_time.size(0), "Mismatched batch dimensions"
batch_size = extract_digit_samples.size(0)
mask_realization_list, time_idx_list = [], []
print('batch_size:', batch_size)
# Prepare data
temp_y_c = extract_digit_label.to(args.device)
temp_mask_realization = extract_digit_samples.unsqueeze(1).long().to(args.device)
temp_idx = extract_time.unsqueeze(-1).to(args.device) # Adding an extra dimension for batch processing
temp_sampling_path = sampling_path.to(args.device)
print(f"Starting temp_idx: {temp_idx[0].item()}")
start_time_index = temp_idx[0].item() # assume all temp_idx is the same values
max_diffusion_step = args.diffusion_steps # max number of timesteps
for ii in tqdm(range(start_time_index, max_diffusion_step), initial=start_time_index, total=max_diffusion_step):
# Check if any temp_idx has reached or exceeded diffusion_steps
if torch.any(temp_idx >= args.diffusion_steps):
break
# Broadcast ii to match the batch size
current_ii = torch.full((batch_size,), ii, dtype=torch.long, device=args.device)
# Make position prediction
conditional_prob, prob = predict_next_index(
model=model,
args=args,
mask_realization=temp_mask_realization,
y_c=temp_y_c,
idx=temp_idx
)
# Get the label for the next token position
next_temp_realization = torch.argmax(conditional_prob.sample(), dim=-1)
# Update temp_mask_realization for each item in the batch
current_location = temp_sampling_path == temp_idx # Adding an extra dimension for comparison
current_location = torch.argmax(current_location.detach().cpu()*1, dim=-1)
temp_mask_realization[:, 0, current_location] = next_temp_realization[:,current_location]
# Append results for each item in the batch
mask_realization_list.append(temp_mask_realization.cpu().numpy())
time_idx_list.append(temp_idx.cpu().numpy())
# Increment temp_idx for the next iteration
temp_idx += 1
return mask_realization_list, time_idx_list
# convert sequence with numerical variables into character letters
def convert_num_to_chars(
tokenizer: any,
num_seq: list
) -> list:
char_seq = [tokenizer[num] for num in num_seq]
return "".join(char_seq)