BioM3 / run_Facilitator_sample.py
Niksa Praljak
Update PenCL argparse and Finish Facilitator script
66d2e5f
raw
history blame
4.59 kB
import argparse
import yaml
from argparse import Namespace
import json
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import Stage1_source.model as mod
# Step 1: Load JSON Configuration
def load_json_config(json_path):
with open(json_path, "r") as f:
config = json.load(f)
return config
# Step 2: Convert JSON dictionary to Namespace
def convert_to_namespace(config_dict):
for key, value in config_dict.items():
if isinstance(value, dict):
config_dict[key] = convert_to_namespace(value)
return Namespace(**config_dict)
# Step 3: Load Pre-trained Model
def prepare_model(config_args, model_path) -> nn.Module:
model = mod.Facilitator(
in_dim=config_args.emb_dim,
hid_dim=config_args.hid_dim,
out_dim=config_args.emb_dim,
dropout=config_args.dropout
)
model.load_state_dict(torch.load(model_path, map_location="cpu"))
model.eval()
print("Model loaded successfully with weights!")
return model
# Step 4: Compute MMD Loss
def compute_mmd_loss(x, y, kernel="rbf", sigma=1.0):
def rbf_kernel(a, b, sigma):
pairwise_distances = torch.cdist(a, b, p=2) ** 2
return torch.exp(-pairwise_distances / (2 * sigma ** 2))
K_xx = rbf_kernel(x, x, sigma)
K_yy = rbf_kernel(y, y, sigma)
K_xy = rbf_kernel(x, y, sigma)
mmd_loss = K_xx.mean() - 2 * K_xy.mean() + K_yy.mean()
return mmd_loss
# Step 5: Argument Parser Function
def parse_arguments():
parser = argparse.ArgumentParser(description="BioM3 Facilitator Model (Stage 2)")
parser.add_argument('--input_data_path', type=str, required=True,
help="Path to the input embeddings (e.g., PenCL_test_outputs.pt)")
parser.add_argument('--output_data_path', type=str, required=True,
help="Path to save the output embeddings (e.g., Facilitator_test_outputs.pt)")
parser.add_argument('--model_path', type=str, required=True,
help="Path to the Facilitator model weights (e.g., BioM3_Facilitator_epoch20.bin)")
parser.add_argument('--json_path', type=str, required=True,
help="Path to the JSON configuration file (stage2_config.json)")
return parser.parse_args()
# Main Execution
if __name__ == '__main__':
# Parse arguments
args = parse_arguments()
# Load configuration
config_dict = load_json_config(args.json_path)
config_args = convert_to_namespace(config_dict)
# Load model
model = prepare_model(config_args=config_args, model_path=args.model_path)
# Load input embeddings
embedding_dataset = torch.load(args.input_data_path)
# Run inference to get facilitated embeddings
with torch.no_grad():
z_t = embedding_dataset['z_t']
z_p = embedding_dataset['z_p']
z_c = model(z_t)
embedding_dataset['z_c'] = z_c
# Compute evaluation metrics
# 1. MSE between embeddings
mse_zc_zp = F.mse_loss(z_c, z_p)
mse_zt_zp = F.mse_loss(z_t, z_p)
# 2. Compute L2 norms for first batch
batch_idx = 0
norm_z_t = torch.norm(z_t[batch_idx], p=2).item()
norm_z_p = torch.norm(z_p[batch_idx], p=2).item()
norm_z_c = torch.norm(z_c[batch_idx], p=2).item()
# 3. Compute MMD between embeddings
mmd_zc_zp = model.compute_mmd(z_c, z_p)
mmd_zp_zt = model.compute_mmd(z_p, z_t)
# Print results
print("\n=== Facilitator Model Output ===")
print(f"Shape of z_t (Text Embeddings): {z_t.shape}")
print(f"Shape of z_p (Protein Embeddings): {z_p.shape}")
print(f"Shape of z_c (Facilitated Embeddings): {z_c.shape}\n")
print("=== Norm (L2 Magnitude) Results for Batch Index 0 ===")
print(f"Norm of z_t (Text Embedding): {norm_z_t:.6f}")
print(f"Norm of z_p (Protein Embedding): {norm_z_p:.6f}")
print(f"Norm of z_c (Facilitated Embedding): {norm_z_c:.6f}")
print("\n=== Mean Squared Error (MSE) Results ===")
print(f"MSE between Facilitated Embeddings (z_c) and Protein Embeddings (z_p): {mse_zc_zp:.6f}")
print(f"MSE between Text Embeddings (z_t) and Protein Embeddings (z_p): {mse_zt_zp:.6f}")
print("\n=== Max Mean Discrepancy (MMD) Results ===")
print(f"MMD between Facilitated Embeddings (z_c) and Protein Embeddings (z_p): {mmd_zc_zp:.6f}")
print(f"MMD between Text Embeddings (z_t) and Protein Embeddings (z_p): {mmd_zp_zt:.6f}")
# Save output embeddings
torch.save(embedding_dataset, args.output_data_path)
print(f"\nFacilitator embeddings saved to {args.output_data_path}")