Niksa Praljak
commited on
Commit
•
0655b48
1
Parent(s):
14fddb7
BioM3-PenCL push with no weights
Browse files- Stage1_source/PL_wrapper.py +1613 -0
- Stage1_source/helper_funcs.py +37 -0
- Stage1_source/model.py +556 -0
- Stage1_source/preprocess.py +410 -0
- stage1_config.json +50 -0
Stage1_source/PL_wrapper.py
ADDED
@@ -0,0 +1,1613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch fucntions
|
2 |
+
import torch
|
3 |
+
from torch import nn, optim
|
4 |
+
from torch.nn import functional as F
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
# PL functions
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
from pytorch_lightning import Trainer, seed_everything
|
10 |
+
|
11 |
+
# misc functions
|
12 |
+
import itertools
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import numpy as np
|
15 |
+
import sys
|
16 |
+
from tqdm import tqdm
|
17 |
+
import time
|
18 |
+
|
19 |
+
# other learning packages
|
20 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
|
21 |
+
|
22 |
+
# our packages
|
23 |
+
import Stage1_source.helper_funcs as helper_tools
|
24 |
+
import Stage1_source.preprocess as prep
|
25 |
+
import Stage1_source.model as mod
|
26 |
+
|
27 |
+
|
28 |
+
######################
|
29 |
+
# Default PL wrapper #
|
30 |
+
######################
|
31 |
+
|
32 |
+
class PL_PEN_CL(pl.LightningModule):
|
33 |
+
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
args: any,
|
38 |
+
model: nn.Module,
|
39 |
+
text_tokenizer: any,
|
40 |
+
sequence_tokenizer: any
|
41 |
+
):
|
42 |
+
|
43 |
+
super().__init__()
|
44 |
+
# arguments
|
45 |
+
self.script_args = args
|
46 |
+
|
47 |
+
# model components
|
48 |
+
self.model = model
|
49 |
+
|
50 |
+
# tokenizers
|
51 |
+
self.text_tokenizer = text_tokenizer
|
52 |
+
self.sequence_tokenizer = sequence_tokenizer
|
53 |
+
|
54 |
+
# validation tracker for outputs
|
55 |
+
self.val_text_joint_latents = []
|
56 |
+
self.val_seq_joint_latents = []
|
57 |
+
|
58 |
+
# prediction tracker for outputs
|
59 |
+
self.predict_text_joint_latents = []
|
60 |
+
self.predict_seq_joint_latents = []
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
x_t: torch.Tensor,
|
65 |
+
x_s: torch.Tensor
|
66 |
+
) -> (
|
67 |
+
torch.Tensor,
|
68 |
+
torch.Tensor,
|
69 |
+
torch.Tensor
|
70 |
+
):
|
71 |
+
|
72 |
+
outputs = self.model(
|
73 |
+
x_t=x_t,
|
74 |
+
x_s=x_s
|
75 |
+
)
|
76 |
+
|
77 |
+
return (
|
78 |
+
outputs['text_joint_latent'],
|
79 |
+
outputs['seq_joint_latent'],
|
80 |
+
)
|
81 |
+
|
82 |
+
def training_step(
|
83 |
+
self,
|
84 |
+
batch: torch.Tensor,
|
85 |
+
batch_idx: any,
|
86 |
+
) -> dict:
|
87 |
+
|
88 |
+
if isinstance(batch, list):
|
89 |
+
# split the
|
90 |
+
text_batch, protein_batch = batch
|
91 |
+
|
92 |
+
# forward pass
|
93 |
+
z_t, z_s = self(
|
94 |
+
x_t=text_batch,
|
95 |
+
x_s=protein_batch
|
96 |
+
)
|
97 |
+
dist.barrier()
|
98 |
+
|
99 |
+
# gather all tensors
|
100 |
+
z_t_all = self.all_gather(z_t, sync_grads=True)
|
101 |
+
dist.barrier()
|
102 |
+
z_s_all = self.all_gather(z_s, sync_grads=True)
|
103 |
+
|
104 |
+
# stack the embeddings
|
105 |
+
z_t_all = z_t_all.view(-1, z_t.shape[-1])
|
106 |
+
z_s_all = z_s_all.view(-1, z_s.shape[-1])
|
107 |
+
|
108 |
+
# compute loss values
|
109 |
+
loss, logits = self.model.compute_loss(
|
110 |
+
protein_embeddings=z_s_all,
|
111 |
+
text_embeddings=z_t_all
|
112 |
+
)
|
113 |
+
|
114 |
+
# track loss ...
|
115 |
+
self.log('train_loss', loss, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
116 |
+
|
117 |
+
# track metrics
|
118 |
+
metric_dict = self.performance_metrics(logits=logits)
|
119 |
+
for key in metric_dict:
|
120 |
+
values = metric_dict[key]
|
121 |
+
|
122 |
+
final_key = 'train_' + key
|
123 |
+
self.log(final_key, metric_dict[key], prog_bar=True if 'f1' in key else False, on_step=True, on_epoch=True, sync_dist=True)
|
124 |
+
|
125 |
+
if batch_idx == 0:
|
126 |
+
gpu_memory_usage = helper_tools.print_gpu_initialization()
|
127 |
+
self.log(f'gpu_memory_usage', gpu_memory_usage, sync_dist=True)
|
128 |
+
|
129 |
+
return {'loss': loss}
|
130 |
+
|
131 |
+
|
132 |
+
def validation_step(
|
133 |
+
self,
|
134 |
+
batch: list,
|
135 |
+
batch_idx: any
|
136 |
+
) -> dict:
|
137 |
+
|
138 |
+
# split the batch
|
139 |
+
if isinstance(batch, list):
|
140 |
+
# mean loss
|
141 |
+
text_batch, protein_batch = batch
|
142 |
+
|
143 |
+
# forward pass
|
144 |
+
z_t, z_s = self(
|
145 |
+
x_t=text_batch,
|
146 |
+
x_s=protein_batch
|
147 |
+
)
|
148 |
+
|
149 |
+
dist.barrier()
|
150 |
+
# gather all tensors
|
151 |
+
z_t_all = self.all_gather(z_t, sync_grads=True).view(-1, z_t.shape[-1])
|
152 |
+
dist.barrier()
|
153 |
+
z_s_all = self.all_gather(z_s, sync_grads=True).view(-1, z_s.shape[-1])
|
154 |
+
|
155 |
+
# stack the embeddings
|
156 |
+
z_t_all = z_t_all.view(-1, z_t.shape[-1])
|
157 |
+
z_s_all = z_s_all.view(-1, z_s.shape[-1])
|
158 |
+
|
159 |
+
# compute loss values
|
160 |
+
loss, logits = self.model.compute_loss(
|
161 |
+
protein_embeddings=z_s_all,
|
162 |
+
text_embeddings=z_t_all
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
# track validation loss ...
|
167 |
+
self.log('valid_loss', loss, prog_bar=True, sync_dist=True)
|
168 |
+
|
169 |
+
# copmute validation metrics
|
170 |
+
metric_dict = self.performance_metrics(logits=logits.detach().cpu())
|
171 |
+
|
172 |
+
for key in metric_dict:
|
173 |
+
values = metric_dict[key]
|
174 |
+
final_key = 'valid_' + key
|
175 |
+
self.log(final_key, metric_dict[key], prog_bar=True if 'f1' in key else False, sync_dist=True)
|
176 |
+
|
177 |
+
# collect joint embedding
|
178 |
+
self.val_text_joint_latents.append(z_t_all.detach().cpu())
|
179 |
+
self.val_seq_joint_latents.append(z_s_all.detach().cpu())
|
180 |
+
|
181 |
+
return {'valid_loss': loss}
|
182 |
+
|
183 |
+
def on_validation_epoch_end(self):
|
184 |
+
|
185 |
+
# collect and aggregate outputs from all validation steps
|
186 |
+
val_z_t_joint = torch.cat(self.val_text_joint_latents, dim=0)
|
187 |
+
val_z_s_joint = torch.cat(self.val_seq_joint_latents, dim=0)
|
188 |
+
|
189 |
+
# compute singular values
|
190 |
+
text_log_sigma_k, S_text = self.compute_singular(val_z_t_joint.detach().cpu())
|
191 |
+
protein_log_sigma_k, S_protein = self.compute_singular(val_z_s_joint.detach().cpu())
|
192 |
+
|
193 |
+
# save image pngs for tracking dimensionality collapse
|
194 |
+
self.save_png_to_tensorboard(
|
195 |
+
data=text_log_sigma_k.numpy(),
|
196 |
+
title='text',
|
197 |
+
)
|
198 |
+
self.save_png_to_tensorboard(
|
199 |
+
data=protein_log_sigma_k.numpy(),
|
200 |
+
title='protein'
|
201 |
+
)
|
202 |
+
|
203 |
+
# free memory
|
204 |
+
self.val_text_joint_latents.clear()
|
205 |
+
self.val_seq_joint_latents.clear()
|
206 |
+
|
207 |
+
|
208 |
+
# compute effective rank (RankME):
|
209 |
+
erank_text = self.compute_effective_rank(sigma_ks=S_text)
|
210 |
+
erank_protein = self.compute_effective_rank(sigma_ks=S_protein)
|
211 |
+
|
212 |
+
# log erank metrics
|
213 |
+
self.log('valid_erank_text', erank_text, sync_dist=True)
|
214 |
+
self.log('valid_erank_protein', erank_protein, sync_dist=True)
|
215 |
+
|
216 |
+
|
217 |
+
def configure_optimizers(self,):
|
218 |
+
|
219 |
+
params = [
|
220 |
+
{"params": self.model.protein_encoder.parameters(), "lr": self.script_args.protein_encoder_lr},
|
221 |
+
{"params": self.model.text_encoder.parameters(), "lr": self.script_args.text_encoder_lr},
|
222 |
+
{"params": itertools.chain(
|
223 |
+
self.model.protein_projection.parameters(),
|
224 |
+
self.model.text_projection.parameters()
|
225 |
+
),
|
226 |
+
"lr": self.script_args.head_lr,
|
227 |
+
"weight_decay": self.script_args.weight_decay}
|
228 |
+
]
|
229 |
+
|
230 |
+
optimizer = torch.optim.AdamW(params, weight_decay=self.script_args.weight_decay)
|
231 |
+
|
232 |
+
return {
|
233 |
+
"optimizer": optimizer,
|
234 |
+
}
|
235 |
+
|
236 |
+
@torch.no_grad()
|
237 |
+
def compute_class_metrics(
|
238 |
+
self,
|
239 |
+
outputs: torch.Tensor,
|
240 |
+
targets: torch.Tensor,
|
241 |
+
source: str
|
242 |
+
) -> dict:
|
243 |
+
|
244 |
+
# convert torch tensors to numpy array
|
245 |
+
outputs_np = outputs.numpy()
|
246 |
+
targets_np = targets.numpy()
|
247 |
+
|
248 |
+
# compute the metrics
|
249 |
+
accuracy = accuracy_score(targets_np, outputs_np.round())
|
250 |
+
precision = precision_score(targets_np, outputs_np.round(), average='micro')
|
251 |
+
recall = recall_score(targets_np, outputs_np.round(), average='micro')
|
252 |
+
f1 = f1_score(targets_np, outputs_np.round(), average='micro')
|
253 |
+
|
254 |
+
return {
|
255 |
+
f'{source}_accuracy': accuracy,
|
256 |
+
f'{source}_precision': precision,
|
257 |
+
f'{source}_recall': recall,
|
258 |
+
f'{source}_f1': f1
|
259 |
+
}
|
260 |
+
|
261 |
+
@torch.no_grad()
|
262 |
+
def performance_metrics(self, logits: torch.Tensor) -> tuple:
|
263 |
+
|
264 |
+
logits = logits.cpu().float()
|
265 |
+
|
266 |
+
# get probs
|
267 |
+
p_text = F.softmax(logits, dim=-1) # prob of a given text captions aligning well with seq. pairs
|
268 |
+
p_seq = F.softmax(logits.T, dim=-1) # prob of a given seq aligning well with text pairs
|
269 |
+
p_tot = (p_seq + p_text) / 2 # total prob
|
270 |
+
|
271 |
+
# get class labels
|
272 |
+
y_pred_text = torch.argmax(p_text, dim=-1)
|
273 |
+
y_pred_seq = torch.argmax(p_seq, dim=-1)
|
274 |
+
y_pred = torch.argmax(p_tot, dim=-1)
|
275 |
+
y_true = torch.arange(y_pred_text.shape[0])
|
276 |
+
|
277 |
+
# compute class metrics
|
278 |
+
text_metrics = self.compute_class_metrics(
|
279 |
+
outputs=y_pred_text,
|
280 |
+
targets=y_true,
|
281 |
+
source='text'
|
282 |
+
)
|
283 |
+
seq_metrics = self.compute_class_metrics(
|
284 |
+
outputs=y_pred_seq,
|
285 |
+
targets=y_true,
|
286 |
+
source='seq'
|
287 |
+
)
|
288 |
+
total_metrics = self.compute_class_metrics(
|
289 |
+
outputs=y_pred,
|
290 |
+
targets=y_true,
|
291 |
+
source='total'
|
292 |
+
)
|
293 |
+
|
294 |
+
# combine dicts into one
|
295 |
+
combined_dict = {}
|
296 |
+
combined_dict.update(text_metrics)
|
297 |
+
combined_dict.update(seq_metrics)
|
298 |
+
combined_dict.update(total_metrics)
|
299 |
+
|
300 |
+
return combined_dict
|
301 |
+
|
302 |
+
@torch.no_grad()
|
303 |
+
def compute_singular(self, inputs: torch.Tensor) -> (
|
304 |
+
torch.Tensor,
|
305 |
+
torch.Tensor
|
306 |
+
):
|
307 |
+
|
308 |
+
# goal of this function: track for dimensionality collapse
|
309 |
+
# inputs dim: (batch_size, emb_dim)
|
310 |
+
|
311 |
+
mean_inputs = torch.mean(inputs, dim=0) # average over batch dimension
|
312 |
+
norm_inputs = inputs - mean_inputs # normalize vectors
|
313 |
+
|
314 |
+
# compute correlation matrix #TODO: double check work...
|
315 |
+
C = torch.zeros((norm_inputs.shape[-1], norm_inputs.shape[-1]))
|
316 |
+
for sample_idx in range(norm_inputs.shape[0]):
|
317 |
+
norm_vector = norm_inputs[sample_idx, :].unsqueeze(0)
|
318 |
+
C += norm_vector.T @ norm_vector
|
319 |
+
C *= 1/norm_vector.shape[0]
|
320 |
+
|
321 |
+
_, S, _ = torch.linalg.svd(C, full_matrices=False)
|
322 |
+
|
323 |
+
# return singular value indexes
|
324 |
+
log_sigma_k, _ = torch.sort(torch.log(S), descending=True)
|
325 |
+
return (
|
326 |
+
log_sigma_k,
|
327 |
+
S
|
328 |
+
)
|
329 |
+
|
330 |
+
def compute_effective_rank(self, sigma_ks: torch.Tensor) -> torch.Tensor:
|
331 |
+
"""
|
332 |
+
references:
|
333 |
+
- Roy et al. The effective rank: a measure of effective dimensionality
|
334 |
+
- Garrido et al. RankMe: Assessing the Downstream Performnace of Pretrained SS Reps by their Rank.
|
335 |
+
"""
|
336 |
+
# sort the singular values
|
337 |
+
sigma_ks, _ = torch.sort(sigma_ks, descending=True)
|
338 |
+
|
339 |
+
# copute L1 norm for sing values.
|
340 |
+
l1_norm_sigma = torch.norm(sigma_ks, p=1)
|
341 |
+
|
342 |
+
# compute singular value distribution
|
343 |
+
p_k = sigma_ks / l1_norm_sigma + torch.finfo(torch.float).eps
|
344 |
+
|
345 |
+
# compute Shannon entropy
|
346 |
+
entropy = - torch.sum(p_k * torch.log(p_k))
|
347 |
+
|
348 |
+
# get effective rank (RankME):
|
349 |
+
erank = torch.exp(entropy)
|
350 |
+
|
351 |
+
return erank
|
352 |
+
|
353 |
+
def save_png_to_tensorboard(
|
354 |
+
self,
|
355 |
+
data: np.single,
|
356 |
+
title: str,
|
357 |
+
x_axis_label: str='Singular Value Rank Index',
|
358 |
+
y_axis_label: str='Log of singular values',
|
359 |
+
):
|
360 |
+
|
361 |
+
current_epoch = self.trainer.current_epoch
|
362 |
+
|
363 |
+
# Plot the line
|
364 |
+
fig, ax = plt.subplots(dpi=300)
|
365 |
+
ax.plot(data)
|
366 |
+
ax.set_xlabel(x_axis_label)
|
367 |
+
ax.set_ylabel(y_axis_label)
|
368 |
+
ax.set_title(title)
|
369 |
+
ax.set_ylim([-25,3])
|
370 |
+
|
371 |
+
# Log the plot in TensorBoard
|
372 |
+
self.logger.experiment.add_figure(f'{title}_SingularValues_{current_epoch}', fig, current_epoch)
|
373 |
+
|
374 |
+
def predict_step(
|
375 |
+
self,
|
376 |
+
batch: torch.Tensor,
|
377 |
+
batch_idx: torch.Tensor,
|
378 |
+
dataloder_idx: bool=False
|
379 |
+
) -> (
|
380 |
+
torch.Tensor,
|
381 |
+
torch.Tensor
|
382 |
+
):
|
383 |
+
|
384 |
+
|
385 |
+
if isinstance(batch, list):
|
386 |
+
# mean loss
|
387 |
+
text_batch, protein_batch = batch
|
388 |
+
outputs = self(
|
389 |
+
x_t=text_batch,
|
390 |
+
x_s=protein_batch,
|
391 |
+
)
|
392 |
+
|
393 |
+
z_t_joint, z_p_joint = outputs
|
394 |
+
|
395 |
+
self.predict_text_joint_latents.append(z_t_joint.detach().cpu())
|
396 |
+
self.predict_seq_joint_latents.append(z_p_joint.detach().cpu())
|
397 |
+
|
398 |
+
return outputs
|
399 |
+
|
400 |
+
def on_predict_epoch_end(self, outputs=None):
|
401 |
+
|
402 |
+
self.predict_text_joint_latents = torch.cat(self.predict_text_joint_latents).cpu()
|
403 |
+
self.predict_seq_joint_latents = torch.cat(self.predict_seq_joint_latents).cpu()
|
404 |
+
|
405 |
+
|
406 |
+
|
407 |
+
##########################
|
408 |
+
# Masked-task PL wrapper #
|
409 |
+
##########################
|
410 |
+
|
411 |
+
class mask_PL_PEN_CL(pl.LightningModule):
|
412 |
+
|
413 |
+
|
414 |
+
def __init__(
|
415 |
+
self,
|
416 |
+
args: any,
|
417 |
+
model: nn.Module,
|
418 |
+
text_tokenizer: any,
|
419 |
+
sequence_tokenizer: any
|
420 |
+
):
|
421 |
+
|
422 |
+
super().__init__()
|
423 |
+
# arguments
|
424 |
+
self.script_args = args
|
425 |
+
|
426 |
+
# model components
|
427 |
+
self.model = model
|
428 |
+
|
429 |
+
# tokenizers
|
430 |
+
self.text_tokenizer = text_tokenizer
|
431 |
+
self.sequence_tokenizer = sequence_tokenizer
|
432 |
+
|
433 |
+
# validation tracker for outputs
|
434 |
+
self.val_text_joint_latents = []
|
435 |
+
self.val_seq_joint_latents = []
|
436 |
+
|
437 |
+
# prediction tracker for outputs
|
438 |
+
self.predict_text_joint_latents = []
|
439 |
+
self.predict_seq_joint_latents = []
|
440 |
+
|
441 |
+
def forward(
|
442 |
+
self,
|
443 |
+
x_t: torch.Tensor,
|
444 |
+
x_s: torch.Tensor,
|
445 |
+
compute_masked_logits: bool=False
|
446 |
+
) -> (
|
447 |
+
torch.Tensor,
|
448 |
+
torch.Tensor,
|
449 |
+
torch.Tensor
|
450 |
+
):
|
451 |
+
|
452 |
+
outputs = self.model(
|
453 |
+
x_t=x_t,
|
454 |
+
x_s=x_s,
|
455 |
+
compute_masked_logits=compute_masked_logits
|
456 |
+
)
|
457 |
+
|
458 |
+
if compute_masked_logits:
|
459 |
+
# forward pass for computing logits for masked language objective
|
460 |
+
return (
|
461 |
+
outputs['text_masked_logits'],
|
462 |
+
outputs['protein_masked_logits']
|
463 |
+
)
|
464 |
+
else:
|
465 |
+
# forward pass for computing latent embeddings in the joint space
|
466 |
+
return (
|
467 |
+
outputs['text_joint_latent'],
|
468 |
+
outputs['seq_joint_latent'],
|
469 |
+
)
|
470 |
+
|
471 |
+
def training_step(
|
472 |
+
self,
|
473 |
+
batch: torch.Tensor,
|
474 |
+
batch_idx: any,
|
475 |
+
) -> dict:
|
476 |
+
|
477 |
+
if isinstance(batch, list):
|
478 |
+
# split the data
|
479 |
+
text_batch, protein_batch, text_mask_batch, protein_mask_batch = batch
|
480 |
+
|
481 |
+
# forward pass
|
482 |
+
z_t, z_s = self(
|
483 |
+
x_t=text_batch,
|
484 |
+
x_s=protein_batch,
|
485 |
+
compute_masked_logits=False
|
486 |
+
)
|
487 |
+
dist.barrier()
|
488 |
+
|
489 |
+
# gather all tensors
|
490 |
+
z_t_all = self.all_gather(z_t, sync_grads=True)
|
491 |
+
dist.barrier()
|
492 |
+
z_s_all = self.all_gather(z_s, sync_grads=True)
|
493 |
+
|
494 |
+
# stack the embeddings
|
495 |
+
z_t_all = z_t_all.view(-1, z_t.shape[-1])
|
496 |
+
z_s_all = z_s_all.view(-1, z_s.shape[-1])
|
497 |
+
|
498 |
+
# compute loss values
|
499 |
+
loss_align, logits = self.model.compute_loss(
|
500 |
+
protein_embeddings=z_s_all,
|
501 |
+
text_embeddings=z_t_all
|
502 |
+
)
|
503 |
+
|
504 |
+
# compute mask language model logits
|
505 |
+
logits_t_mask, logits_s_mask = self(
|
506 |
+
x_t=text_mask_batch,
|
507 |
+
x_s=protein_mask_batch,
|
508 |
+
compute_masked_logits=True
|
509 |
+
)
|
510 |
+
|
511 |
+
# compute mask language loss for biomedical expert model
|
512 |
+
loss_text_mask = self.model.compute_masked_lang_loss(
|
513 |
+
logits_masked=logits_t_mask,
|
514 |
+
targets=text_batch,
|
515 |
+
targets_masked=text_mask_batch,
|
516 |
+
mask_token_id=self.text_tokenizer.mask_token_id
|
517 |
+
)
|
518 |
+
|
519 |
+
# compute mask language loss for protein expert model
|
520 |
+
loss_sequence_mask = self.model.compute_masked_lang_loss(
|
521 |
+
logits_masked=logits_s_mask,
|
522 |
+
targets=protein_batch,
|
523 |
+
targets_masked=protein_mask_batch,
|
524 |
+
mask_token_id=self.sequence_tokenizer.mask_idx
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
# total loss
|
529 |
+
loss = loss_align + loss_text_mask + loss_sequence_mask
|
530 |
+
|
531 |
+
# track loss ...
|
532 |
+
self.log('train_loss', loss, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
533 |
+
self.log('train_loss_align', loss_align, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
534 |
+
self.log('train_loss_text_mask', loss_text_mask, prog_bar=False, on_step=True, on_epoch=True, sync_dist=True)
|
535 |
+
self.log('train_loss_seq_mask', loss_sequence_mask, prog_bar=False, on_step=True, on_epoch=True, sync_dist=True)
|
536 |
+
|
537 |
+
# track metrics
|
538 |
+
metric_dict = self.performance_metrics(logits=logits)
|
539 |
+
for key in metric_dict:
|
540 |
+
values = metric_dict[key]
|
541 |
+
|
542 |
+
final_key = 'train_' + key
|
543 |
+
self.log(final_key, metric_dict[key], prog_bar=True if 'f1' in key else False, on_step=True, on_epoch=True, sync_dist=True)
|
544 |
+
|
545 |
+
if batch_idx == 0:
|
546 |
+
gpu_memory_usage = helper_tools.print_gpu_initialization()
|
547 |
+
self.log(f'gpu_memory_usage', gpu_memory_usage, sync_dist=True)
|
548 |
+
|
549 |
+
return {'loss': loss}
|
550 |
+
|
551 |
+
|
552 |
+
def validation_step(
|
553 |
+
self,
|
554 |
+
batch: list,
|
555 |
+
batch_idx: any
|
556 |
+
) -> dict:
|
557 |
+
|
558 |
+
# split the batch
|
559 |
+
if isinstance(batch, list):
|
560 |
+
# mean loss
|
561 |
+
text_batch, protein_batch, text_mask_batch, protein_mask_batch = batch
|
562 |
+
|
563 |
+
# forward pass
|
564 |
+
z_t, z_s = self(
|
565 |
+
x_t=text_batch,
|
566 |
+
x_s=protein_batch
|
567 |
+
)
|
568 |
+
|
569 |
+
dist.barrier()
|
570 |
+
# gather all tensors
|
571 |
+
z_t_all = self.all_gather(z_t, sync_grads=True).view(-1, z_t.shape[-1])
|
572 |
+
dist.barrier()
|
573 |
+
z_s_all = self.all_gather(z_s, sync_grads=True).view(-1, z_s.shape[-1])
|
574 |
+
|
575 |
+
# stack the embeddings
|
576 |
+
z_t_all = z_t_all.view(-1, z_t.shape[-1])
|
577 |
+
z_s_all = z_s_all.view(-1, z_s.shape[-1])
|
578 |
+
|
579 |
+
# compute loss values
|
580 |
+
loss_align, logits = self.model.compute_loss(
|
581 |
+
protein_embeddings=z_s_all,
|
582 |
+
text_embeddings=z_t_all
|
583 |
+
)
|
584 |
+
|
585 |
+
# compute mask language model logits
|
586 |
+
logits_t_mask, logits_s_mask = self(
|
587 |
+
x_t=text_mask_batch,
|
588 |
+
x_s=protein_mask_batch,
|
589 |
+
compute_masked_logits=True
|
590 |
+
)
|
591 |
+
|
592 |
+
# compute mask language loss for biomedical expert model
|
593 |
+
loss_text_mask = self.model.compute_masked_lang_loss(
|
594 |
+
logits_masked=logits_t_mask,
|
595 |
+
targets=text_batch,
|
596 |
+
targets_masked=text_mask_batch,
|
597 |
+
mask_token_id=self.text_tokenizer.mask_token_id
|
598 |
+
)
|
599 |
+
|
600 |
+
# compute mask language loss for protein expert model
|
601 |
+
loss_sequence_mask = self.model.compute_masked_lang_loss(
|
602 |
+
logits_masked=logits_s_mask,
|
603 |
+
targets=protein_batch,
|
604 |
+
targets_masked=protein_mask_batch,
|
605 |
+
mask_token_id=self.sequence_tokenizer.mask_idx
|
606 |
+
)
|
607 |
+
|
608 |
+
# total loss
|
609 |
+
loss = loss_align + loss_text_mask + loss_sequence_mask
|
610 |
+
|
611 |
+
# track validation loss ...
|
612 |
+
self.log('valid_loss', loss, prog_bar=True, sync_dist=True)
|
613 |
+
self.log('valid_loss_align', loss_align, prog_bar=True, sync_dist=True)
|
614 |
+
self.log('valid_loss_text_mask', loss_text_mask, prog_bar=False, sync_dist=True)
|
615 |
+
self.log('valid_loss_seq_mask', loss_sequence_mask, prog_bar=False, sync_dist=True)
|
616 |
+
|
617 |
+
# copmute validation metrics
|
618 |
+
metric_dict = self.performance_metrics(logits=logits.detach().cpu())
|
619 |
+
|
620 |
+
for key in metric_dict:
|
621 |
+
values = metric_dict[key]
|
622 |
+
final_key = 'valid_' + key
|
623 |
+
self.log(final_key, metric_dict[key], prog_bar=True if 'f1' in key else False, sync_dist=True)
|
624 |
+
|
625 |
+
# collect joint embedding
|
626 |
+
self.val_text_joint_latents.append(z_t_all.detach().cpu())
|
627 |
+
self.val_seq_joint_latents.append(z_s_all.detach().cpu())
|
628 |
+
|
629 |
+
return {'valid_loss': loss}
|
630 |
+
|
631 |
+
def on_validation_epoch_end(self):
|
632 |
+
|
633 |
+
# # collect and aggregate outputs from all validation steps
|
634 |
+
# val_z_t_joint = torch.cat(self.val_text_joint_latents, dim=0)
|
635 |
+
# val_z_s_joint = torch.cat(self.val_seq_joint_latents, dim=0)
|
636 |
+
|
637 |
+
# compute singular values
|
638 |
+
# text_log_sigma_k, S_text = self.compute_singular(val_z_t_joint.detach().cpu())
|
639 |
+
# protein_log_sigma_k, S_protein = self.compute_singular(val_z_s_joint.detach().cpu())
|
640 |
+
|
641 |
+
# save image pngs for tracking dimensionality collapse
|
642 |
+
# self.save_png_to_tensorboard(
|
643 |
+
# data=text_log_sigma_k.numpy(),
|
644 |
+
# title='text',
|
645 |
+
# )
|
646 |
+
# self.save_png_to_tensorboard(
|
647 |
+
# data=protein_log_sigma_k.numpy(),
|
648 |
+
# title='protein'
|
649 |
+
# )
|
650 |
+
|
651 |
+
# free memory
|
652 |
+
self.val_text_joint_latents.clear()
|
653 |
+
self.val_seq_joint_latents.clear()
|
654 |
+
|
655 |
+
|
656 |
+
# compute effective rank (RankME):
|
657 |
+
# erank_text = self.compute_effective_rank(sigma_ks=S_text)
|
658 |
+
# erank_protein = self.compute_effective_rank(sigma_ks=S_protein)
|
659 |
+
|
660 |
+
# log erank metrics
|
661 |
+
# self.log('valid_erank_text', erank_text, sync_dist=True)
|
662 |
+
# self.log('valid_erank_protein', erank_protein, sync_dist=True)
|
663 |
+
|
664 |
+
|
665 |
+
def configure_optimizers(self,):
|
666 |
+
|
667 |
+
params = [
|
668 |
+
{"params": self.model.protein_encoder.parameters(), "lr": self.script_args.protein_encoder_lr},
|
669 |
+
{"params": self.model.text_encoder.parameters(), "lr": self.script_args.text_encoder_lr},
|
670 |
+
{"params": itertools.chain(
|
671 |
+
self.model.protein_projection.parameters(),
|
672 |
+
self.model.text_projection.parameters()
|
673 |
+
),
|
674 |
+
"lr": self.script_args.head_lr,
|
675 |
+
"weight_decay": self.script_args.weight_decay}
|
676 |
+
]
|
677 |
+
|
678 |
+
optimizer = torch.optim.AdamW(params, weight_decay=self.script_args.weight_decay)
|
679 |
+
|
680 |
+
return {
|
681 |
+
"optimizer": optimizer,
|
682 |
+
}
|
683 |
+
|
684 |
+
@torch.no_grad()
|
685 |
+
def compute_class_metrics(
|
686 |
+
self,
|
687 |
+
outputs: torch.Tensor,
|
688 |
+
targets: torch.Tensor,
|
689 |
+
source: str
|
690 |
+
) -> dict:
|
691 |
+
|
692 |
+
# convert torch tensors to numpy array
|
693 |
+
outputs_np = outputs.numpy()
|
694 |
+
targets_np = targets.numpy()
|
695 |
+
|
696 |
+
# compute the metrics
|
697 |
+
accuracy = accuracy_score(targets_np, outputs_np.round())
|
698 |
+
precision = precision_score(targets_np, outputs_np.round(), average='micro')
|
699 |
+
recall = recall_score(targets_np, outputs_np.round(), average='micro')
|
700 |
+
f1 = f1_score(targets_np, outputs_np.round(), average='micro')
|
701 |
+
|
702 |
+
return {
|
703 |
+
f'{source}_accuracy': accuracy,
|
704 |
+
f'{source}_precision': precision,
|
705 |
+
f'{source}_recall': recall,
|
706 |
+
f'{source}_f1': f1
|
707 |
+
}
|
708 |
+
|
709 |
+
@torch.no_grad()
|
710 |
+
def performance_metrics(self, logits: torch.Tensor) -> tuple:
|
711 |
+
|
712 |
+
logits = logits.cpu().float()
|
713 |
+
|
714 |
+
# get probs
|
715 |
+
p_text = F.softmax(logits, dim=-1) # prob of a given text captions aligning well with seq. pairs
|
716 |
+
p_seq = F.softmax(logits.T, dim=-1) # prob of a given seq aligning well with text pairs
|
717 |
+
p_tot = (p_seq + p_text) / 2 # total prob
|
718 |
+
|
719 |
+
# get class labels
|
720 |
+
y_pred_text = torch.argmax(p_text, dim=-1)
|
721 |
+
y_pred_seq = torch.argmax(p_seq, dim=-1)
|
722 |
+
y_pred = torch.argmax(p_tot, dim=-1)
|
723 |
+
y_true = torch.arange(y_pred_text.shape[0])
|
724 |
+
|
725 |
+
# compute class metrics
|
726 |
+
text_metrics = self.compute_class_metrics(
|
727 |
+
outputs=y_pred_text,
|
728 |
+
targets=y_true,
|
729 |
+
source='text'
|
730 |
+
)
|
731 |
+
seq_metrics = self.compute_class_metrics(
|
732 |
+
outputs=y_pred_seq,
|
733 |
+
targets=y_true,
|
734 |
+
source='seq'
|
735 |
+
)
|
736 |
+
total_metrics = self.compute_class_metrics(
|
737 |
+
outputs=y_pred,
|
738 |
+
targets=y_true,
|
739 |
+
source='total'
|
740 |
+
)
|
741 |
+
|
742 |
+
# combine dicts into one
|
743 |
+
combined_dict = {}
|
744 |
+
combined_dict.update(text_metrics)
|
745 |
+
combined_dict.update(seq_metrics)
|
746 |
+
combined_dict.update(total_metrics)
|
747 |
+
|
748 |
+
return combined_dict
|
749 |
+
|
750 |
+
@torch.no_grad()
|
751 |
+
def compute_singular(self, inputs: torch.Tensor) -> (
|
752 |
+
torch.Tensor,
|
753 |
+
torch.Tensor
|
754 |
+
):
|
755 |
+
|
756 |
+
# goal of this function: track for dimensionality collapse
|
757 |
+
# inputs dim: (batch_size, emb_dim)
|
758 |
+
|
759 |
+
mean_inputs = torch.mean(inputs, dim=0) # average over batch dimension
|
760 |
+
norm_inputs = inputs - mean_inputs # normalize vectors
|
761 |
+
|
762 |
+
# compute correlation matrix #TODO: double check work...
|
763 |
+
C = torch.zeros((norm_inputs.shape[-1], norm_inputs.shape[-1]))
|
764 |
+
for sample_idx in tqdm(range(norm_inputs.shape[0])):
|
765 |
+
norm_vector = norm_inputs[sample_idx, :].unsqueeze(0)
|
766 |
+
C += norm_vector.T @ norm_vector
|
767 |
+
C *= 1/norm_vector.shape[0]
|
768 |
+
|
769 |
+
_, S, _ = torch.linalg.svd(C, full_matrices=False)
|
770 |
+
|
771 |
+
# return singular value indexes
|
772 |
+
log_sigma_k, _ = torch.sort(torch.log(S), descending=True)
|
773 |
+
return (
|
774 |
+
log_sigma_k,
|
775 |
+
S
|
776 |
+
)
|
777 |
+
|
778 |
+
def compute_effective_rank(self, sigma_ks: torch.Tensor) -> torch.Tensor:
|
779 |
+
"""
|
780 |
+
references:
|
781 |
+
- Roy et al. The effective rank: a measure of effective dimensionality
|
782 |
+
- Garrido et al. RankMe: Assessing the Downstream Performnace of Pretrained SS Reps by their Rank.
|
783 |
+
"""
|
784 |
+
# sort the singular values
|
785 |
+
sigma_ks, _ = torch.sort(sigma_ks, descending=True)
|
786 |
+
|
787 |
+
# copute L1 norm for sing values.
|
788 |
+
l1_norm_sigma = torch.norm(sigma_ks, p=1)
|
789 |
+
|
790 |
+
# compute singular value distribution
|
791 |
+
p_k = sigma_ks / l1_norm_sigma + torch.finfo(torch.float).eps
|
792 |
+
|
793 |
+
# compute Shannon entropy
|
794 |
+
entropy = - torch.sum(p_k * torch.log(p_k))
|
795 |
+
|
796 |
+
# get effective rank (RankME):
|
797 |
+
erank = torch.exp(entropy)
|
798 |
+
|
799 |
+
return erank
|
800 |
+
|
801 |
+
def save_png_to_tensorboard(
|
802 |
+
self,
|
803 |
+
data: np.single,
|
804 |
+
title: str,
|
805 |
+
x_axis_label: str='Singular Value Rank Index',
|
806 |
+
y_axis_label: str='Log of singular values',
|
807 |
+
):
|
808 |
+
|
809 |
+
current_epoch = self.trainer.current_epoch
|
810 |
+
|
811 |
+
# Plot the line
|
812 |
+
fig, ax = plt.subplots(dpi=300)
|
813 |
+
ax.plot(data)
|
814 |
+
ax.set_xlabel(x_axis_label)
|
815 |
+
ax.set_ylabel(y_axis_label)
|
816 |
+
ax.set_title(title)
|
817 |
+
ax.set_ylim([-25,3])
|
818 |
+
|
819 |
+
# Log the plot in TensorBoard
|
820 |
+
self.logger.experiment.add_figure(f'{title}_SingularValues_{current_epoch}', fig, current_epoch)
|
821 |
+
|
822 |
+
def predict_step(
|
823 |
+
self,
|
824 |
+
batch: torch.Tensor,
|
825 |
+
batch_idx: torch.Tensor,
|
826 |
+
dataloder_idx: bool=False
|
827 |
+
) -> (
|
828 |
+
torch.Tensor,
|
829 |
+
torch.Tensor
|
830 |
+
):
|
831 |
+
|
832 |
+
|
833 |
+
if isinstance(batch, list):
|
834 |
+
# mean loss
|
835 |
+
text_batch, protein_batch = batch
|
836 |
+
outputs = self(
|
837 |
+
x_t=text_batch,
|
838 |
+
x_s=protein_batch,
|
839 |
+
compute_masked_logits=False
|
840 |
+
)
|
841 |
+
|
842 |
+
z_t_joint, z_p_joint = outputs
|
843 |
+
|
844 |
+
self.predict_text_joint_latents.append(z_t_joint.detach().cpu())
|
845 |
+
self.predict_seq_joint_latents.append(z_p_joint.detach().cpu())
|
846 |
+
|
847 |
+
return outputs
|
848 |
+
|
849 |
+
def on_predict_epoch_end(self, outputs=None):
|
850 |
+
|
851 |
+
self.predict_text_joint_latents = torch.cat(self.predict_text_joint_latents).cpu()
|
852 |
+
self.predict_seq_joint_latents = torch.cat(self.predict_seq_joint_latents).cpu()
|
853 |
+
|
854 |
+
|
855 |
+
|
856 |
+
########################
|
857 |
+
# Pfam-task PL wrapper #
|
858 |
+
########################
|
859 |
+
|
860 |
+
|
861 |
+
class pfam_PL_PEN_CL(pl.LightningModule):
|
862 |
+
|
863 |
+
|
864 |
+
def __init__(
|
865 |
+
self,
|
866 |
+
args: any,
|
867 |
+
model: nn.Module,
|
868 |
+
text_tokenizer: any,
|
869 |
+
sequence_tokenizer: any
|
870 |
+
):
|
871 |
+
|
872 |
+
super().__init__()
|
873 |
+
# arguments
|
874 |
+
self.script_args = args
|
875 |
+
|
876 |
+
# model components
|
877 |
+
self.model = model
|
878 |
+
|
879 |
+
# tokenizers
|
880 |
+
self.text_tokenizer = text_tokenizer
|
881 |
+
self.sequence_tokenizer = sequence_tokenizer
|
882 |
+
|
883 |
+
# validation tracker for outputs
|
884 |
+
self.val_text_joint_latents = []
|
885 |
+
self.val_seq_joint_latents = []
|
886 |
+
|
887 |
+
# predictions...
|
888 |
+
self.predict_text_joint_latents = []
|
889 |
+
self.predict_seq_joint_latents = []
|
890 |
+
|
891 |
+
def forward(
|
892 |
+
self,
|
893 |
+
x_t: torch.Tensor,
|
894 |
+
x_p: torch.Tensor,
|
895 |
+
compute_masked_logits: bool=False
|
896 |
+
) -> (
|
897 |
+
torch.Tensor,
|
898 |
+
torch.Tensor,
|
899 |
+
torch.Tensor
|
900 |
+
):
|
901 |
+
|
902 |
+
outputs = self.model(
|
903 |
+
x_t=x_t,
|
904 |
+
x_s=x_p,
|
905 |
+
compute_masked_logits=compute_masked_logits
|
906 |
+
)
|
907 |
+
|
908 |
+
if compute_masked_logits:
|
909 |
+
# forward pass for computing logits for masked language objective
|
910 |
+
return (
|
911 |
+
outputs['text_masked_logits'],
|
912 |
+
outputs['protein_masked_logits']
|
913 |
+
)
|
914 |
+
else:
|
915 |
+
# forward pass for computing latent embeddings in the joint space
|
916 |
+
return (
|
917 |
+
outputs['text_joint_latent'],
|
918 |
+
outputs['seq_joint_latent'],
|
919 |
+
)
|
920 |
+
|
921 |
+
|
922 |
+
def on_train_batch_start(self, batch, batch_idx):
|
923 |
+
self.batch_start_time = time.time()
|
924 |
+
|
925 |
+
def on_train_batch_end(self, outputs, batch, batch_idx):
|
926 |
+
batch_end_time = time.time()
|
927 |
+
batch_time = batch_end_time - self.batch_start_time
|
928 |
+
#print(f'Rank={dist.get_rank()}: time to process batch is {batch_time}')
|
929 |
+
#self.log(f'batch_time_rank_{dist.get_rank()}', batch_time, on_step=True, on_epoch=False)
|
930 |
+
|
931 |
+
def training_step(self, batch: torch.Tensor, batch_idx: any) -> dict:
|
932 |
+
"""
|
933 |
+
Execute a single training step.
|
934 |
+
|
935 |
+
Given a batch of data, this function processes both Swiss-Prot and Pfam data through the model, computes
|
936 |
+
various loss values including inter-modal, intra-modal, and masked language model losses for both text
|
937 |
+
and protein sequences. This function also computes and logs various metrics and GPU memory usage.
|
938 |
+
|
939 |
+
Parameters:
|
940 |
+
- batch: The input data batch. This can include multiple types of data.
|
941 |
+
- batch_idx: Index of the current batch.
|
942 |
+
|
943 |
+
Steps:
|
944 |
+
1. Split the data into Swiss-Prot and Pfam batches, if the batch is a list.
|
945 |
+
2. Forward pass the Swiss-Prot data through the model.
|
946 |
+
3. Synchronize and gather embeddings from all GPUs.
|
947 |
+
4. Forward pass the Pfam data through the model.
|
948 |
+
5. Synchronize and gather Pfam embeddings from all GPUs.
|
949 |
+
6. Concatenate Swiss-Prot and Pfam embeddings.
|
950 |
+
7. Compute inter-modal and intra-modal loss values.
|
951 |
+
8. Compute masked language model logits for the concatenated batch.
|
952 |
+
9. Compute masked language loss for both text and protein sequences.
|
953 |
+
10. Compute and log the total loss and individual loss components.
|
954 |
+
11. Compute and log performance metrics.
|
955 |
+
12. Log GPU memory usage at the start of training.
|
956 |
+
|
957 |
+
Returns:
|
958 |
+
- Dictionary containing the total loss value.
|
959 |
+
|
960 |
+
Note:
|
961 |
+
This function is intended to be used within a distributed (multi-GPU) training context, as evident
|
962 |
+
from the use of barriers and gathering operations. It's designed to handle batches that contain both
|
963 |
+
Swiss-Prot and Pfam data, both being biological datasets used in multi-modal protein embeddings.
|
964 |
+
The function utilizes both inter-modal (between modalities) and intra-modal (within the same modality)
|
965 |
+
contrastive losses, as well as masked language modeling objectives similar to BERT's MLM objective.
|
966 |
+
"""
|
967 |
+
|
968 |
+
# Check if the batch is a list and split data if so.
|
969 |
+
if isinstance(batch, list):
|
970 |
+
text_batch, protein_batch, text_mask_batch, protein_mask_batch, \
|
971 |
+
pfam_text_batch, pfam_protein_batch, pfam_text_mask_batch, pfam_protein_mask_batch, \
|
972 |
+
bool_pfam_vector = batch
|
973 |
+
|
974 |
+
|
975 |
+
#print(f'rank={dist.get_rank()}: text size {text_batch.shape}')
|
976 |
+
|
977 |
+
#start_time_forward_pass = time.time()
|
978 |
+
# Forward pass with Swiss-Prot data.
|
979 |
+
z_t_swiss, z_p_swiss = self(
|
980 |
+
x_t=text_batch,
|
981 |
+
x_p=protein_batch,
|
982 |
+
compute_masked_logits=False
|
983 |
+
)
|
984 |
+
# Timer end and log
|
985 |
+
#end_time_forward_pass = time.time()
|
986 |
+
#print(f"Rank={dist.get_rank()}: Time taken for Swiss-Prot forward pass: {end_time_forward_pass - start_time_forward_pass} seconds.")
|
987 |
+
|
988 |
+
# Ensure all GPUs are synchronized.
|
989 |
+
dist.barrier()
|
990 |
+
|
991 |
+
# Forward pass with Pfam data.
|
992 |
+
z_t_pfam, z_p_pfam = self(
|
993 |
+
x_t=pfam_text_batch,
|
994 |
+
x_p=pfam_protein_batch,
|
995 |
+
compute_masked_logits=False
|
996 |
+
)
|
997 |
+
dist.barrier()
|
998 |
+
|
999 |
+
#Gather tensors from all GPUs.
|
1000 |
+
z_t_swiss_all = self.all_gather(z_t_swiss, sync_grads=True)
|
1001 |
+
dist.barrier()
|
1002 |
+
z_p_swiss_all = self.all_gather(z_p_swiss, sync_grads=True)
|
1003 |
+
|
1004 |
+
# Reshape the embeddings.
|
1005 |
+
z_t_swiss_all = z_t_swiss_all.view(-1, z_t_swiss.shape[-1])
|
1006 |
+
z_p_swiss_all = z_p_swiss_all.view(-1, z_p_swiss.shape[-1])
|
1007 |
+
|
1008 |
+
|
1009 |
+
# Gather tensors from all GPUs.
|
1010 |
+
z_t_pfam_all = self.all_gather(z_t_pfam, sync_grads=True)
|
1011 |
+
dist.barrier()
|
1012 |
+
z_p_pfam_all = self.all_gather(z_p_pfam, sync_grads=True)
|
1013 |
+
|
1014 |
+
# Reshape the embeddings.
|
1015 |
+
z_t_pfam_all = z_t_pfam_all.view(-1, z_t_pfam.shape[-1])
|
1016 |
+
z_p_pfam_all = z_p_pfam_all.view(-1, z_p_pfam.shape[-1])
|
1017 |
+
|
1018 |
+
# Concatenate Swiss-Prot and Pfam embeddings.
|
1019 |
+
z_t_all = torch.cat((z_t_swiss_all, z_t_pfam_all), dim=0)
|
1020 |
+
z_p_all = torch.cat((z_p_swiss_all, z_p_pfam_all), dim=0)
|
1021 |
+
|
1022 |
+
# Timer start
|
1023 |
+
#start_time_loss_computation = time.time()
|
1024 |
+
|
1025 |
+
# Compute inter-modal loss.
|
1026 |
+
loss_align, logits = self.model.compute_inter_loss(
|
1027 |
+
protein_embeddings=z_p_all,
|
1028 |
+
text_embeddings=z_t_all,
|
1029 |
+
batch_size=z_p_all.shape[0] // 2
|
1030 |
+
)
|
1031 |
+
# Timer end and log
|
1032 |
+
#end_time_loss_computation = time.time()
|
1033 |
+
#print(f"Rank={dist.get_rank()}: Time taken for loss computation: {end_time_loss_computation - start_time_loss_computation} seconds.")
|
1034 |
+
|
1035 |
+
|
1036 |
+
# Compute intra-modal loss.
|
1037 |
+
loss_intra, cosine_similarity = self.model.compute_intra_loss(
|
1038 |
+
protein_embeddings=z_p_all,
|
1039 |
+
batch_size=z_p_all.shape[0] // 2
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
# Concatenate batches for masked language modeling.
|
1043 |
+
all_text_batch = torch.cat((text_batch, pfam_text_batch), dim=0)
|
1044 |
+
all_protein_batch = torch.cat((protein_batch, pfam_protein_batch), dim=0)
|
1045 |
+
all_text_mask_batch = torch.cat((text_mask_batch, pfam_text_mask_batch), dim=0)
|
1046 |
+
all_protein_mask_batch = torch.cat((protein_mask_batch, pfam_protein_mask_batch), dim=0)
|
1047 |
+
|
1048 |
+
#TODO: timer start
|
1049 |
+
#start_time_mask_comp = time.time()
|
1050 |
+
|
1051 |
+
# Compute masked language model logits.
|
1052 |
+
logits_t_mask, logits_s_mask = self(
|
1053 |
+
x_t=all_text_mask_batch,
|
1054 |
+
x_p=all_protein_mask_batch,
|
1055 |
+
compute_masked_logits=True
|
1056 |
+
)
|
1057 |
+
#end_time_mask_comp = time.time()
|
1058 |
+
#print(f"Rank={dist.get_rank()}: Time taken for mask predictions: {end_time_mask_comp - start_time_mask_comp} seconds.")
|
1059 |
+
|
1060 |
+
|
1061 |
+
# Compute masked language model loss for text data.
|
1062 |
+
loss_text_mask = self.model.compute_masked_lang_loss(
|
1063 |
+
logits_masked=logits_t_mask,
|
1064 |
+
targets=all_text_batch,
|
1065 |
+
targets_masked=all_text_mask_batch,
|
1066 |
+
mask_token_id=self.text_tokenizer.mask_token_id
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
# Compute masked language model loss for protein data.
|
1070 |
+
loss_sequence_mask = self.model.compute_masked_lang_loss(
|
1071 |
+
logits_masked=logits_s_mask,
|
1072 |
+
targets=all_protein_batch,
|
1073 |
+
targets_masked=all_protein_mask_batch,
|
1074 |
+
mask_token_id=self.sequence_tokenizer.mask_idx
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
|
1078 |
+
if self.script_args.dataset_type == 'pfam':
|
1079 |
+
# Aggregate all computed losses.
|
1080 |
+
loss = loss_align + loss_intra + loss_text_mask + loss_sequence_mask
|
1081 |
+
|
1082 |
+
elif self.script_args.dataset_type == 'pfam_ablated':
|
1083 |
+
# Aggregate all losses besides PFC.
|
1084 |
+
loss = loss_align + loss_text_mask + loss_sequence_mask
|
1085 |
+
else:
|
1086 |
+
# Add an assertion here
|
1087 |
+
assert self.script_args.dataset_type in ['pfam', 'pfam_ablated'], "Unexpected dataset_type value"
|
1088 |
+
sys.stderr.write("Unexpected dataset_type value\n")
|
1089 |
+
sys.exit(1)
|
1090 |
+
|
1091 |
+
# Log the individual and total loss values.
|
1092 |
+
self.log('train_loss', loss, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
1093 |
+
self.log('train_loss_align', loss_align, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
1094 |
+
self.log('train_loss_intra', loss_intra, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
1095 |
+
self.log('train_loss_text_mask', loss_text_mask, prog_bar=False, on_step=True, on_epoch=True, sync_dist=True)
|
1096 |
+
self.log('train_loss_seq_mask', loss_sequence_mask, prog_bar=False, on_step=True, on_epoch=True, sync_dist=True)
|
1097 |
+
|
1098 |
+
# Compute and log additional performance metrics.
|
1099 |
+
metric_dict = self.performance_metrics(logits=logits)
|
1100 |
+
for key in metric_dict:
|
1101 |
+
values = metric_dict[key]
|
1102 |
+
final_key = 'train_' + key
|
1103 |
+
self.log(final_key, metric_dict[key], prog_bar=True if 'f1' in key else False, on_step=True, on_epoch=True, sync_dist=True)
|
1104 |
+
|
1105 |
+
# Log GPU memory usage at the beginning of the training.
|
1106 |
+
if batch_idx == 0:
|
1107 |
+
gpu_memory_usage = helper_tools.print_gpu_initialization()
|
1108 |
+
self.log(f'gpu_memory_usage', gpu_memory_usage, sync_dist=True)
|
1109 |
+
|
1110 |
+
# log CPU memory
|
1111 |
+
memory_usage = helper_tools.print_memory_usage()
|
1112 |
+
self.log(f'memory_usage', memory_usage, sync_dist=True)
|
1113 |
+
|
1114 |
+
return {'loss': loss}
|
1115 |
+
|
1116 |
+
|
1117 |
+
def validation_step(
|
1118 |
+
self,
|
1119 |
+
batch: torch.Tensor,
|
1120 |
+
batch_idx: any,
|
1121 |
+
) -> dict:
|
1122 |
+
|
1123 |
+
"""
|
1124 |
+
`validation_step()`: Validates a single batch of data and computes loss and performance metrics.
|
1125 |
+
|
1126 |
+
Parameters:
|
1127 |
+
- `self`: Reference to the current instance of the model or module.
|
1128 |
+
- `batch`: Input data, which might contain text and protein sequences, their corresponding masks, and additional data from both Swiss-Prot and Pfam datasets.
|
1129 |
+
- `batch_idx`: Identifier for the current batch.
|
1130 |
+
|
1131 |
+
Functionality:
|
1132 |
+
1. Extracts and processes data from the given batch.
|
1133 |
+
2. Computes embeddings for Swiss-Prot and Pfam datasets.
|
1134 |
+
3. Concatenates these embeddings to form a unified representation.
|
1135 |
+
4. Computes various loss values: inter-modal, intra-modal, and masked language losses for both biomedical texts and protein sequences.
|
1136 |
+
5. Logs the computed loss values and other performance metrics, highlighting metrics such as F1-score.
|
1137 |
+
6. Collects and appends the joint embeddings of the batch for potential future use.
|
1138 |
+
|
1139 |
+
Returns:
|
1140 |
+
- A dictionary with the total validation loss for the current batch.
|
1141 |
+
"""
|
1142 |
+
|
1143 |
+
if isinstance(batch, list):
|
1144 |
+
# split the data
|
1145 |
+
text_batch, protein_batch, text_mask_batch, protein_mask_batch, \
|
1146 |
+
pfam_text_batch, pfam_protein_batch, pfam_text_mask_batch, pfam_protein_mask_batch, \
|
1147 |
+
bool_pfam_vector = batch
|
1148 |
+
|
1149 |
+
|
1150 |
+
# forward pass over the swiss-prot data
|
1151 |
+
z_t_swiss, z_p_swiss = self(
|
1152 |
+
x_t=text_batch,
|
1153 |
+
x_p=protein_batch,
|
1154 |
+
compute_masked_logits=False
|
1155 |
+
)
|
1156 |
+
dist.barrier() # wait till all GPUs catch up...
|
1157 |
+
|
1158 |
+
# gather all tensors
|
1159 |
+
z_t_swiss_all = self.all_gather(z_t_swiss, sync_grads=True)
|
1160 |
+
dist.barrier()
|
1161 |
+
z_p_swiss_all = self.all_gather(z_p_swiss, sync_grads=True)
|
1162 |
+
|
1163 |
+
# stack the embeddings
|
1164 |
+
z_t_swiss_all = z_t_swiss_all.view(-1, z_t_swiss.shape[-1])
|
1165 |
+
z_p_swiss_all = z_p_swiss_all.view(-1, z_p_swiss.shape[-1])
|
1166 |
+
|
1167 |
+
# foward pass over the pfam data
|
1168 |
+
z_t_pfam, z_p_pfam = self(
|
1169 |
+
x_t=pfam_text_batch,
|
1170 |
+
x_p=pfam_protein_batch,
|
1171 |
+
compute_masked_logits=False
|
1172 |
+
)
|
1173 |
+
dist.barrier() # wait till all GPUs catch up...
|
1174 |
+
|
1175 |
+
# gather all tensors
|
1176 |
+
z_t_pfam_all = self.all_gather(z_t_pfam, sync_grads=True)
|
1177 |
+
dist.barrier()
|
1178 |
+
z_p_pfam_all = self.all_gather(z_p_pfam, sync_grads=True)
|
1179 |
+
|
1180 |
+
# stack the embeddings
|
1181 |
+
z_t_pfam_all = z_t_pfam_all.view(-1, z_t_pfam.shape[-1])
|
1182 |
+
z_p_pfam_all = z_p_pfam_all.view(-1, z_p_pfam.shape[-1])
|
1183 |
+
|
1184 |
+
# concatenate swiss-prot <> pfam embeddings
|
1185 |
+
z_t_all = torch.cat((z_t_swiss_all, z_t_pfam_all), dim=0)
|
1186 |
+
z_p_all = torch.cat((z_p_swiss_all, z_p_pfam_all), dim=0)
|
1187 |
+
|
1188 |
+
# compute inter-modal loss values
|
1189 |
+
loss_align, logits = self.model.compute_inter_loss(
|
1190 |
+
protein_embeddings=z_p_all,
|
1191 |
+
text_embeddings=z_t_all,
|
1192 |
+
batch_size=z_p_all.shape[0] // 2
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
# compute intra-modal loss values
|
1196 |
+
loss_intra, cosine_similarity = self.model.compute_intra_loss(
|
1197 |
+
protein_embeddings=z_p_all,
|
1198 |
+
batch_size=z_p_all.shape[0] // 2
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
# concatenate batch samples
|
1202 |
+
all_text_batch = torch.cat((text_batch, pfam_text_batch), dim=0)
|
1203 |
+
all_protein_batch = torch.cat((protein_batch, pfam_protein_batch), dim=0)
|
1204 |
+
all_text_mask_batch = torch.cat((text_mask_batch, pfam_text_mask_batch), dim=0)
|
1205 |
+
all_protein_mask_batch = torch.cat((protein_mask_batch, pfam_protein_mask_batch), dim=0)
|
1206 |
+
|
1207 |
+
# compute mask language model logits
|
1208 |
+
logits_t_mask, logits_s_mask = self(
|
1209 |
+
x_t=all_text_mask_batch,
|
1210 |
+
x_p=all_protein_mask_batch,
|
1211 |
+
compute_masked_logits=True
|
1212 |
+
)
|
1213 |
+
|
1214 |
+
# compute mask language loss for biomedical expert model
|
1215 |
+
loss_text_mask = self.model.compute_masked_lang_loss(
|
1216 |
+
logits_masked=logits_t_mask,
|
1217 |
+
targets=all_text_batch,
|
1218 |
+
targets_masked=all_text_mask_batch,
|
1219 |
+
mask_token_id=self.text_tokenizer.mask_token_id
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
# compute mask language loss for protein expert model
|
1223 |
+
loss_sequence_mask = self.model.compute_masked_lang_loss(
|
1224 |
+
logits_masked=logits_s_mask,
|
1225 |
+
targets=all_protein_batch,
|
1226 |
+
targets_masked=all_protein_mask_batch,
|
1227 |
+
mask_token_id=self.sequence_tokenizer.mask_idx
|
1228 |
+
)
|
1229 |
+
|
1230 |
+
|
1231 |
+
# total loss
|
1232 |
+
#loss = loss_align + loss_intra + loss_text_mask + loss_sequence_mask
|
1233 |
+
|
1234 |
+
if self.script_args.dataset_type == 'pfam':
|
1235 |
+
# Aggregate all computed losses.
|
1236 |
+
loss = loss_align + loss_intra + loss_text_mask + loss_sequence_mask
|
1237 |
+
|
1238 |
+
elif self.script_args.dataset_type == 'pfam_ablated':
|
1239 |
+
# Aggregate all losses besides PFC.
|
1240 |
+
loss = loss_align + loss_text_mask + loss_sequence_mask
|
1241 |
+
else:
|
1242 |
+
# Add an assertion here
|
1243 |
+
assert self.script_args.dataset_type in ['pfam', 'pfam_ablated'], "Unexpected dataset_type value"
|
1244 |
+
sys.stderr.write("Unexpected dataset_type value\n")
|
1245 |
+
sys.exit(1)
|
1246 |
+
|
1247 |
+
|
1248 |
+
# track loss ...
|
1249 |
+
self.log('valid_loss', loss, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
1250 |
+
self.log('valid_loss_align', loss_align, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
1251 |
+
self.log('valid_loss_intra', loss_intra, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
1252 |
+
self.log('valid_loss_text_mask', loss_text_mask, prog_bar=False, on_step=True, on_epoch=True, sync_dist=True)
|
1253 |
+
self.log('valid_loss_seq_mask', loss_sequence_mask, prog_bar=False, on_step=True, on_epoch=True, sync_dist=True)
|
1254 |
+
# log CPU memory
|
1255 |
+
memory_usage = helper_tools.print_memory_usage()
|
1256 |
+
self.log(f'memory_usage', memory_usage, sync_dist=True)
|
1257 |
+
|
1258 |
+
# track metrics
|
1259 |
+
metric_dict = self.performance_metrics(logits=logits.detach().cpu())
|
1260 |
+
for key in metric_dict:
|
1261 |
+
values = metric_dict[key]
|
1262 |
+
final_key = 'valid_' + key
|
1263 |
+
self.log(final_key, metric_dict[key], prog_bar=True if 'f1' in key else False, on_step=True, on_epoch=True, sync_dist=True)
|
1264 |
+
|
1265 |
+
|
1266 |
+
# collect joint embedding
|
1267 |
+
#self.val_text_joint_latents.append(z_t_all.detach().cpu())
|
1268 |
+
#self.val_seq_joint_latents.append(z_p_all.detach().cpu())
|
1269 |
+
|
1270 |
+
return {'valid_loss': loss}
|
1271 |
+
|
1272 |
+
|
1273 |
+
# def on_validation_epoch_end(self):
|
1274 |
+
# print('Enter validation end of epoch analysis...')
|
1275 |
+
#
|
1276 |
+
# # collect and aggregate outputs from all validation steps
|
1277 |
+
# val_z_t_joint = torch.cat(self.val_text_joint_latents, dim=0)
|
1278 |
+
# val_z_s_joint = torch.cat(self.val_seq_joint_latents, dim=0)
|
1279 |
+
#
|
1280 |
+
# # compute singular values
|
1281 |
+
# print('Compute singular values...')
|
1282 |
+
# text_log_sigma_k, S_text = self.compute_singular(val_z_t_joint.detach().cpu())
|
1283 |
+
# protein_log_sigma_k, S_protein = self.compute_singular(val_z_s_joint.detach().cpu())
|
1284 |
+
#
|
1285 |
+
# # save image pngs for tracking dimensionality collapse
|
1286 |
+
# self.save_png_to_tensorboard(
|
1287 |
+
# data=text_log_sigma_k.numpy(),
|
1288 |
+
# title='text',
|
1289 |
+
# )
|
1290 |
+
# self.save_png_to_tensorboard(
|
1291 |
+
# data=protein_log_sigma_k.numpy(),
|
1292 |
+
# title='protein'
|
1293 |
+
# )
|
1294 |
+
#
|
1295 |
+
# # free memory
|
1296 |
+
# self.val_text_joint_latents.clear()
|
1297 |
+
# self.val_seq_joint_latents.clear()
|
1298 |
+
#
|
1299 |
+
#
|
1300 |
+
# # compute effective rank (RankME):
|
1301 |
+
# print('Compute eranks')
|
1302 |
+
# erank_text = self.compute_effective_rank(sigma_ks=S_text)
|
1303 |
+
# erank_protein = self.compute_effective_rank(sigma_ks=S_protein)
|
1304 |
+
#
|
1305 |
+
# # log erank metrics
|
1306 |
+
# self.log('valid_erank_text', erank_text, sync_dist=True)
|
1307 |
+
# self.log('valid_erank_protein', erank_protein, sync_dist=True)
|
1308 |
+
|
1309 |
+
def configure_optimizers(self,):
|
1310 |
+
|
1311 |
+
params = [
|
1312 |
+
{"params": self.model.protein_encoder.parameters(), "lr": self.script_args.protein_encoder_lr},
|
1313 |
+
{"params": self.model.text_encoder.parameters(), "lr": self.script_args.text_encoder_lr},
|
1314 |
+
{"params": itertools.chain(
|
1315 |
+
self.model.protein_projection.parameters(),
|
1316 |
+
self.model.text_projection.parameters()
|
1317 |
+
),
|
1318 |
+
"lr": self.script_args.head_lr,
|
1319 |
+
"weight_decay": self.script_args.weight_decay}
|
1320 |
+
]
|
1321 |
+
|
1322 |
+
optimizer = torch.optim.AdamW(params, weight_decay=self.script_args.weight_decay)
|
1323 |
+
|
1324 |
+
return {
|
1325 |
+
"optimizer": optimizer,
|
1326 |
+
}
|
1327 |
+
|
1328 |
+
@torch.no_grad()
|
1329 |
+
def compute_class_metrics(
|
1330 |
+
self,
|
1331 |
+
outputs: torch.Tensor,
|
1332 |
+
targets: torch.Tensor,
|
1333 |
+
source: str
|
1334 |
+
) -> dict:
|
1335 |
+
|
1336 |
+
# convert torch tensors to numpy array
|
1337 |
+
outputs_np = outputs.numpy()
|
1338 |
+
targets_np = targets.numpy()
|
1339 |
+
|
1340 |
+
# compute the metrics
|
1341 |
+
accuracy = accuracy_score(targets_np, outputs_np.round())
|
1342 |
+
precision = precision_score(targets_np, outputs_np.round(), average='micro')
|
1343 |
+
recall = recall_score(targets_np, outputs_np.round(), average='micro')
|
1344 |
+
f1 = f1_score(targets_np, outputs_np.round(), average='micro')
|
1345 |
+
|
1346 |
+
return {
|
1347 |
+
f'{source}_accuracy': accuracy,
|
1348 |
+
f'{source}_precision': precision,
|
1349 |
+
f'{source}_recall': recall,
|
1350 |
+
f'{source}_f1': f1
|
1351 |
+
}
|
1352 |
+
|
1353 |
+
@torch.no_grad()
|
1354 |
+
def performance_metrics(self, logits: torch.Tensor) -> tuple:
|
1355 |
+
|
1356 |
+
logits = logits.cpu().float()
|
1357 |
+
|
1358 |
+
# get probs
|
1359 |
+
p_text = F.softmax(logits, dim=-1) # prob of a given text captions aligning well with seq. pairs
|
1360 |
+
p_seq = F.softmax(logits.T, dim=-1) # prob of a given seq aligning well with text pairs
|
1361 |
+
p_tot = (p_seq + p_text) / 2 # total prob
|
1362 |
+
|
1363 |
+
# get class labels
|
1364 |
+
y_pred_text = torch.argmax(p_text, dim=-1)
|
1365 |
+
y_pred_seq = torch.argmax(p_seq, dim=-1)
|
1366 |
+
y_pred = torch.argmax(p_tot, dim=-1)
|
1367 |
+
y_true = torch.arange(y_pred_text.shape[0])
|
1368 |
+
|
1369 |
+
# compute class metrics
|
1370 |
+
text_metrics = self.compute_class_metrics(
|
1371 |
+
outputs=y_pred_text,
|
1372 |
+
targets=y_true,
|
1373 |
+
source='text'
|
1374 |
+
)
|
1375 |
+
seq_metrics = self.compute_class_metrics(
|
1376 |
+
outputs=y_pred_seq,
|
1377 |
+
targets=y_true,
|
1378 |
+
source='seq'
|
1379 |
+
)
|
1380 |
+
total_metrics = self.compute_class_metrics(
|
1381 |
+
outputs=y_pred,
|
1382 |
+
targets=y_true,
|
1383 |
+
source='total'
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
# combine dicts into one
|
1387 |
+
combined_dict = {}
|
1388 |
+
combined_dict.update(text_metrics)
|
1389 |
+
combined_dict.update(seq_metrics)
|
1390 |
+
combined_dict.update(total_metrics)
|
1391 |
+
|
1392 |
+
return combined_dict
|
1393 |
+
|
1394 |
+
@torch.no_grad()
|
1395 |
+
def compute_singular(self, inputs: torch.Tensor) -> (
|
1396 |
+
torch.Tensor,
|
1397 |
+
torch.Tensor
|
1398 |
+
):
|
1399 |
+
|
1400 |
+
# goal of this function: track for dimensionality collapse
|
1401 |
+
# inputs dim: (batch_size, emb_dim)
|
1402 |
+
|
1403 |
+
mean_inputs = torch.mean(inputs, dim=0) # average over batch dimension
|
1404 |
+
norm_inputs = inputs - mean_inputs # normalize vectors
|
1405 |
+
|
1406 |
+
# compute correlation matrix #TODO: double check work...
|
1407 |
+
C = torch.zeros((norm_inputs.shape[-1], norm_inputs.shape[-1]))
|
1408 |
+
for sample_idx in range(norm_inputs.shape[0]):
|
1409 |
+
norm_vector = norm_inputs[sample_idx, :].unsqueeze(0)
|
1410 |
+
C += norm_vector.T @ norm_vector
|
1411 |
+
C *= 1/norm_vector.shape[0]
|
1412 |
+
|
1413 |
+
_, S, _ = torch.linalg.svd(C, full_matrices=False)
|
1414 |
+
|
1415 |
+
# return singular value indexes
|
1416 |
+
log_sigma_k, _ = torch.sort(torch.log(S), descending=True)
|
1417 |
+
return (
|
1418 |
+
log_sigma_k,
|
1419 |
+
S
|
1420 |
+
)
|
1421 |
+
|
1422 |
+
def compute_effective_rank(self, sigma_ks: torch.Tensor) -> torch.Tensor:
|
1423 |
+
"""
|
1424 |
+
references:
|
1425 |
+
- Roy et al. The effective rank: a measure of effective dimensionality
|
1426 |
+
- Garrido et al. RankMe: Assessing the Downstream Performnace of Pretrained SS Reps by their Rank.
|
1427 |
+
"""
|
1428 |
+
# sort the singular values
|
1429 |
+
sigma_ks, _ = torch.sort(sigma_ks, descending=True)
|
1430 |
+
|
1431 |
+
# copute L1 norm for sing values.
|
1432 |
+
l1_norm_sigma = torch.norm(sigma_ks, p=1)
|
1433 |
+
|
1434 |
+
# compute singular value distribution
|
1435 |
+
p_k = sigma_ks / l1_norm_sigma + torch.finfo(torch.float).eps
|
1436 |
+
|
1437 |
+
# compute Shannon entropy
|
1438 |
+
entropy = - torch.sum(p_k * torch.log(p_k))
|
1439 |
+
|
1440 |
+
# get effective rank (RankME):
|
1441 |
+
erank = torch.exp(entropy)
|
1442 |
+
|
1443 |
+
return erank
|
1444 |
+
|
1445 |
+
def save_png_to_tensorboard(
|
1446 |
+
self,
|
1447 |
+
data: np.single,
|
1448 |
+
title: str,
|
1449 |
+
x_axis_label: str='Singular Value Rank Index',
|
1450 |
+
y_axis_label: str='Log of singular values',
|
1451 |
+
):
|
1452 |
+
|
1453 |
+
current_epoch = self.trainer.current_epoch
|
1454 |
+
|
1455 |
+
# Plot the line
|
1456 |
+
fig, ax = plt.subplots(dpi=300)
|
1457 |
+
ax.plot(data)
|
1458 |
+
ax.set_xlabel(x_axis_label)
|
1459 |
+
ax.set_ylabel(y_axis_label)
|
1460 |
+
ax.set_title(title)
|
1461 |
+
ax.set_ylim([-25,3])
|
1462 |
+
|
1463 |
+
# Log the plot in TensorBoard
|
1464 |
+
self.logger.experiment.add_figure(f'{title}_SingularValues_{current_epoch}', fig, current_epoch)
|
1465 |
+
|
1466 |
+
# Close the figure to free up memory
|
1467 |
+
plt.close(fig)
|
1468 |
+
|
1469 |
+
def predict_step(
|
1470 |
+
self,
|
1471 |
+
batch: torch.Tensor,
|
1472 |
+
batch_idx: torch.Tensor,
|
1473 |
+
dataloder_idx: bool=False
|
1474 |
+
) -> (
|
1475 |
+
torch.Tensor,
|
1476 |
+
torch.Tensor
|
1477 |
+
):
|
1478 |
+
|
1479 |
+
|
1480 |
+
if isinstance(batch, list):
|
1481 |
+
# mean loss
|
1482 |
+
text_batch, protein_batch = batch
|
1483 |
+
outputs = self(
|
1484 |
+
x_t=text_batch,
|
1485 |
+
x_p=protein_batch,
|
1486 |
+
compute_masked_logits=False
|
1487 |
+
)
|
1488 |
+
|
1489 |
+
z_t_joint, z_p_joint = outputs
|
1490 |
+
|
1491 |
+
self.predict_text_joint_latents.append(z_t_joint.detach().cpu())
|
1492 |
+
self.predict_seq_joint_latents.append(z_p_joint.detach().cpu())
|
1493 |
+
|
1494 |
+
return outputs
|
1495 |
+
|
1496 |
+
def on_predict_epoch_end(self, outputs=None):
|
1497 |
+
|
1498 |
+
self.predict_text_joint_latents = torch.cat(self.predict_text_joint_latents).cpu()
|
1499 |
+
self.predict_seq_joint_latents = torch.cat(self.predict_seq_joint_latents).cpu()
|
1500 |
+
|
1501 |
+
|
1502 |
+
##########################
|
1503 |
+
# Facilitator PL wrapper #
|
1504 |
+
##########################
|
1505 |
+
|
1506 |
+
class PL_Facilitator(pl.LightningModule):
|
1507 |
+
|
1508 |
+
def __init__(
|
1509 |
+
self,
|
1510 |
+
args: any
|
1511 |
+
):
|
1512 |
+
|
1513 |
+
super().__init__()
|
1514 |
+
|
1515 |
+
# arguments
|
1516 |
+
self.args = args
|
1517 |
+
|
1518 |
+
# model
|
1519 |
+
self.model = mod.Facilitator(
|
1520 |
+
in_dim=self.args.emb_dim,
|
1521 |
+
hid_dim=self.args.hid_dim,
|
1522 |
+
out_dim=self.args.emb_dim,
|
1523 |
+
dropout=self.args.dropout
|
1524 |
+
)
|
1525 |
+
|
1526 |
+
self.text_to_protein_joint_embeddings = []
|
1527 |
+
|
1528 |
+
def forward(
|
1529 |
+
self,
|
1530 |
+
z_t: torch.Tensor,
|
1531 |
+
) -> torch.Tensor:
|
1532 |
+
|
1533 |
+
# reconfigure z_t to z_p (additional alignment)
|
1534 |
+
z_t_to_p = self.model(z_t)
|
1535 |
+
|
1536 |
+
return z_t_to_p
|
1537 |
+
|
1538 |
+
|
1539 |
+
|
1540 |
+
def training_step(self, batch: torch.Tensor, batch_id: any) -> dict:
|
1541 |
+
|
1542 |
+
# check if the batch is a list and split data if so
|
1543 |
+
if isinstance(batch, list):
|
1544 |
+
text_embeddings, protein_embeddings = batch
|
1545 |
+
|
1546 |
+
# forward pass with the model
|
1547 |
+
z_t_to_p = self(z_t=text_embeddings)
|
1548 |
+
|
1549 |
+
# compute loss
|
1550 |
+
loss = self.model.compute_loss(
|
1551 |
+
output=z_t_to_p,
|
1552 |
+
target=protein_embeddings,
|
1553 |
+
loss_option=self.args.loss_type
|
1554 |
+
)
|
1555 |
+
|
1556 |
+
# log the total loss
|
1557 |
+
self.log('train_loss', loss, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
1558 |
+
|
1559 |
+
return {'loss': loss}
|
1560 |
+
|
1561 |
+
|
1562 |
+
def validation_step(self, batch: torch.Tensor, batch_id: any) -> dict:
|
1563 |
+
|
1564 |
+
# check if the batch is a list and split data if so
|
1565 |
+
if isinstance(batch, list):
|
1566 |
+
text_embeddings, protein_embeddings = batch
|
1567 |
+
|
1568 |
+
# forward pass with the model
|
1569 |
+
z_t_to_p = self(z_t=text_embeddings)
|
1570 |
+
|
1571 |
+
# compute loss
|
1572 |
+
loss = self.model.compute_loss(
|
1573 |
+
output=z_t_to_p,
|
1574 |
+
target=protein_embeddings,
|
1575 |
+
loss_option=self.args.loss_type
|
1576 |
+
)
|
1577 |
+
|
1578 |
+
# log the total loss
|
1579 |
+
self.log('valid_loss', loss, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)
|
1580 |
+
|
1581 |
+
return {'loss': loss}
|
1582 |
+
|
1583 |
+
|
1584 |
+
def configure_optimizers(self,):
|
1585 |
+
|
1586 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay)
|
1587 |
+
|
1588 |
+
return {
|
1589 |
+
"optimizer": optimizer
|
1590 |
+
}
|
1591 |
+
|
1592 |
+
|
1593 |
+
def predict_step(self, batch: torch.Tensor, batch_idx: int, dataloader_idx: int = None) -> torch.Tensor:
|
1594 |
+
"""
|
1595 |
+
Defines a single prediction (inference) step.
|
1596 |
+
"""
|
1597 |
+
|
1598 |
+
# Unpack the batch if it comes in a list format.
|
1599 |
+
# Here, we only take text embeddings for prediction as an example.
|
1600 |
+
if isinstance(batch, list):
|
1601 |
+
text_embeddings, _ = batch # We ignore the second element (protein_embeddings)
|
1602 |
+
else:
|
1603 |
+
text_embeddings = batch
|
1604 |
+
|
1605 |
+
# Perform forward pass to get transformed text embeddings (z_t_to_p)
|
1606 |
+
z_t_to_p = self(z_t=text_embeddings)
|
1607 |
+
self.text_to_protein_joint_embeddings.append(z_t_to_p.detach().cpu())
|
1608 |
+
|
1609 |
+
return z_t_to_p
|
1610 |
+
|
1611 |
+
def on_predict_epoch_end(self, outputs=None):
|
1612 |
+
|
1613 |
+
self.text_to_protein_joint_embeddings = torch.cat(self.text_to_protein_joint_embeddings).cpu()
|
Stage1_source/helper_funcs.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pynvml import *
|
2 |
+
import psutil
|
3 |
+
|
4 |
+
"""
|
5 |
+
To track memory allocation, let's take advantage of the nvidia-ml-py3 package and GPU memory allocation from python.
|
6 |
+
|
7 |
+
ref: https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
def print_gpu_initialization():
|
12 |
+
nvmlInit()
|
13 |
+
handle = nvmlDeviceGetHandleByIndex(0)
|
14 |
+
info = nvmlDeviceGetMemoryInfo(handle)
|
15 |
+
print(f"GPU memory occupied: {info.used//1024**2} MB.")
|
16 |
+
return info.used // 1024**2
|
17 |
+
|
18 |
+
|
19 |
+
def print_summary(result):
|
20 |
+
print(f"Time: {result.metrics['train_runtime']:.2f}")
|
21 |
+
print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
|
22 |
+
print_gpu_utilization()
|
23 |
+
|
24 |
+
|
25 |
+
def print_memory_usage():
|
26 |
+
process = psutil.Process(os.getpid())
|
27 |
+
memory_in_bytes = process.memory_info().rss
|
28 |
+
memory_in_megabytes = memory_in_bytes / (1024 ** 2)
|
29 |
+
#print(f"Memory used by this script: {memory_in_megabytes:.2f} MB")
|
30 |
+
|
31 |
+
return memory_in_megabytes
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
Stage1_source/model.py
ADDED
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers import AutoTokenizer, AutoModel, BertTokenizer, BertForMaskedLM
|
8 |
+
import torch.distributed as dist
|
9 |
+
import esm
|
10 |
+
from torch.nn.utils.weight_norm import weight_norm
|
11 |
+
|
12 |
+
|
13 |
+
"""
|
14 |
+
functions and classes adapted from the following:
|
15 |
+
1. https://keras.io/examples/vision/nl_image_search/
|
16 |
+
2. https://colab.research.google.com/drive/1hYHb0FTdKQCXZs3qCwVZnSuVGrZU2Z1w?usp=sharing
|
17 |
+
"""
|
18 |
+
|
19 |
+
class ProteinEncoder(nn.Module):
|
20 |
+
"""
|
21 |
+
Encoder for protein sequence to a fixed size vector --> z_s
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, args: any):
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
#self.script_args = args
|
28 |
+
self.seq_model_path = args.seq_model_path
|
29 |
+
self.pretrained = args.pretrained_seq
|
30 |
+
self.trainable = args.trainable_seq
|
31 |
+
self.n_layers_to_finetune = args.pLM_n_layers_to_finetune
|
32 |
+
self.rep_layer = args.rep_layer
|
33 |
+
self.model, self.alphabet = self.get_ESM_model() # get model and alphabet (ESM)
|
34 |
+
|
35 |
+
for p in self.model.parameters():
|
36 |
+
if self.trainable and self.n_layers_to_finetune == 0:
|
37 |
+
p.required_grad = True
|
38 |
+
else:
|
39 |
+
p.requires_grad = False
|
40 |
+
|
41 |
+
# Make the last n_layers_to_finetune layers trainable
|
42 |
+
if self.trainable and self.n_layers_to_finetune != 0:
|
43 |
+
for layer in self.model.layers[-self.n_layers_to_finetune:]:
|
44 |
+
for p in layer.parameters():
|
45 |
+
p.requires_grad = True
|
46 |
+
|
47 |
+
# Use the [CLS] token hidden representation as the sentence's embedding
|
48 |
+
# for the downstream latent alignment.
|
49 |
+
self.target_token_idx = 0
|
50 |
+
|
51 |
+
def get_ESM_model(self):
|
52 |
+
|
53 |
+
return esm.pretrained.load_model_and_alphabet(
|
54 |
+
os.path.expanduser(
|
55 |
+
self.seq_model_path
|
56 |
+
)
|
57 |
+
)
|
58 |
+
|
59 |
+
def forward(self, x_s: torch.Tensor, compute_logits: bool=False):
|
60 |
+
# drop channel depth
|
61 |
+
x_s = x_s.squeeze(1)
|
62 |
+
|
63 |
+
outputs = self.model(
|
64 |
+
x_s,
|
65 |
+
repr_layers=[self.rep_layer],
|
66 |
+
return_contacts=False
|
67 |
+
)
|
68 |
+
|
69 |
+
# mask langauge model objective
|
70 |
+
if compute_logits:
|
71 |
+
logits = outputs['logits']
|
72 |
+
return logits
|
73 |
+
|
74 |
+
# fine-tuning cls token for protein sequence alignment with biomedical text
|
75 |
+
cls_hidden = outputs['representations'][self.rep_layer][:,self.target_token_idx,:]
|
76 |
+
return cls_hidden
|
77 |
+
|
78 |
+
class TextEncoder(nn.Module):
|
79 |
+
|
80 |
+
"""
|
81 |
+
Encoder for protein's natural text to a fixed size vector --> z_t
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self, args: any):
|
85 |
+
super().__init__()
|
86 |
+
|
87 |
+
self.model_name = args.text_model_path
|
88 |
+
self.pretrained = args.pretrained_text
|
89 |
+
self.trainable = args.trainable_text
|
90 |
+
self.n_layers_to_finetune = args.bLM_n_layers_to_finetune
|
91 |
+
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model_path)
|
92 |
+
|
93 |
+
if self.pretrained:
|
94 |
+
#self.model = AutoModel.from_pretrained(self.model_name)
|
95 |
+
self.model = BertForMaskedLM.from_pretrained(self.model_name)
|
96 |
+
|
97 |
+
else:
|
98 |
+
#self.model = AutoModel.from_config(self.model_name)
|
99 |
+
self.model = BertForMaskedLM.from_config(self.model_name)
|
100 |
+
|
101 |
+
for p in self.model.parameters():
|
102 |
+
if self.trainable and self.n_layers_to_finetune == 0:
|
103 |
+
p.required_grad = True
|
104 |
+
else:
|
105 |
+
p.requires_grad = False
|
106 |
+
|
107 |
+
# Make the last n_layers_to_finetune layers trainable
|
108 |
+
if self.trainable and self.n_layers_to_finetune != 0:
|
109 |
+
for layer in self.model.bert.encoder.layer[-self.n_layers_to_finetune:]:
|
110 |
+
for p in layer.parameters():
|
111 |
+
p.requires_grad = True
|
112 |
+
|
113 |
+
# Use the [CLS] token hidden representation as the sentence's embedding
|
114 |
+
# for the downstream latent alignment.
|
115 |
+
self.target_token_idx = 0
|
116 |
+
|
117 |
+
def forward(self, inputs: torch.Tensor, compute_logits: bool=False) -> torch.Tensor:
|
118 |
+
# drop channel depth
|
119 |
+
inputs = inputs.squeeze(1)
|
120 |
+
|
121 |
+
if compute_logits:
|
122 |
+
# compute the masked language model logits
|
123 |
+
#sequence_output = outputs.last_hidden_state
|
124 |
+
outputs = self.model(inputs)
|
125 |
+
logits = outputs.logits
|
126 |
+
return logits
|
127 |
+
|
128 |
+
else:
|
129 |
+
outputs = self.model(inputs, output_hidden_states=True)
|
130 |
+
# use the token representations...
|
131 |
+
last_hidden_state = outputs.hidden_states[-1]
|
132 |
+
return last_hidden_state[:, self.target_token_idx, :] # return [cls] token
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
class ProjectionHead(nn.Module):
|
137 |
+
"""
|
138 |
+
g(.) which maps z_t --> h_t or z_s --> h_s
|
139 |
+
|
140 |
+
Note: h is the joint embedding representation, h_t
|
141 |
+
is the joint embedding for the text caption, and
|
142 |
+
h_s is the joint embedding for the protein sequence.
|
143 |
+
"""
|
144 |
+
|
145 |
+
def __init__(self, embedding_dim: int, args: any):
|
146 |
+
|
147 |
+
super().__init__()
|
148 |
+
self.projection_dim = args.proj_embedding_dim
|
149 |
+
self.dropout = args.dropout
|
150 |
+
self.embedding_dim = embedding_dim
|
151 |
+
|
152 |
+
# model graph
|
153 |
+
self.projection = nn.Linear(self.embedding_dim, self.projection_dim)
|
154 |
+
self.gelu = nn.GELU()
|
155 |
+
self.fc = nn.Linear(self.projection_dim, self.projection_dim)
|
156 |
+
self.dropout = nn.Dropout(self.dropout)
|
157 |
+
self.layer_norm = nn.LayerNorm(self.projection_dim)
|
158 |
+
|
159 |
+
def forward(self, z: torch.Tensor) -> torch.Tensor:
|
160 |
+
|
161 |
+
projection = self.projection(z)
|
162 |
+
h = self.gelu(projection)
|
163 |
+
h = self.fc(h)
|
164 |
+
h = self.dropout(h)
|
165 |
+
h = h + projection
|
166 |
+
h = self.layer_norm(h)
|
167 |
+
return h
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
#####################
|
173 |
+
# Pfam architecture #
|
174 |
+
#####################
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
class pfam_PEN_CL(nn.Module):
|
179 |
+
|
180 |
+
"""
|
181 |
+
Protein Embeddings with Natural lanauge using Constrastive Learing (PEN-CL) while including pfam constrastive learning.
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(self, args: any):
|
185 |
+
|
186 |
+
super().__init__()
|
187 |
+
|
188 |
+
self.protein_embedding = args.protein_encoder_embedding
|
189 |
+
self.text_embedding = args.text_encoder_embedding
|
190 |
+
self.temperature = args.temperature
|
191 |
+
|
192 |
+
# protein sequence expert
|
193 |
+
self.protein_encoder = ProteinEncoder(args=args)
|
194 |
+
# natural text expert
|
195 |
+
self.text_encoder = TextEncoder(args=args)
|
196 |
+
|
197 |
+
# projection heads g_seq( . ) --> joint embedding space
|
198 |
+
self.protein_projection = ProjectionHead(
|
199 |
+
embedding_dim=self.protein_embedding,
|
200 |
+
args=args
|
201 |
+
)
|
202 |
+
|
203 |
+
# projection heads g_text( . ) --> joint embedding space
|
204 |
+
self.text_projection = ProjectionHead(
|
205 |
+
embedding_dim=self.text_embedding,
|
206 |
+
args=args
|
207 |
+
)
|
208 |
+
|
209 |
+
def forward(
|
210 |
+
self,
|
211 |
+
x_t: torch.Tensor,
|
212 |
+
x_s: torch.Tensor,
|
213 |
+
compute_masked_logits: bool=False
|
214 |
+
) -> dict:
|
215 |
+
|
216 |
+
if compute_masked_logits:
|
217 |
+
# forward pass for computing logits for masked langauge objective
|
218 |
+
protein_logits = self.protein_encoder(x_s, compute_logits=True)
|
219 |
+
text_logits = self.text_encoder(x_t, compute_logits=True)
|
220 |
+
|
221 |
+
return {
|
222 |
+
'text_masked_logits': text_logits,
|
223 |
+
'protein_masked_logits': protein_logits
|
224 |
+
}
|
225 |
+
|
226 |
+
else:
|
227 |
+
# split the tuple into 2 dicts...
|
228 |
+
# getting protein sequence and text inputs ...
|
229 |
+
z_t = self.text_encoder(x_t, compute_logits=False)
|
230 |
+
z_s = self.protein_encoder(x_s, compute_logits=False)
|
231 |
+
|
232 |
+
# "joint" sequence and text embedding (with same dimension)
|
233 |
+
z_t_joint = self.text_projection(z_t)
|
234 |
+
z_s_joint = self.protein_projection(z_s)
|
235 |
+
|
236 |
+
return {
|
237 |
+
'text_joint_latent': z_t_joint,
|
238 |
+
'seq_joint_latent': z_s_joint,
|
239 |
+
}
|
240 |
+
|
241 |
+
def compute_inter_loss(
|
242 |
+
self,
|
243 |
+
protein_embeddings: torch.Tensor,
|
244 |
+
text_embeddings: torch.Tensor,
|
245 |
+
batch_size: int
|
246 |
+
) -> (
|
247 |
+
torch.Tensor,
|
248 |
+
torch.Tensor
|
249 |
+
):
|
250 |
+
|
251 |
+
"""
|
252 |
+
Compute the inter-modal contrastive InfoNCE loss between protein and text embeddings.
|
253 |
+
|
254 |
+
Parameters:
|
255 |
+
- protein_embeddings: A tensor representing the embeddings of the protein sequences.
|
256 |
+
- text_embeddings: A tensor representing the embeddings of the text descriptions.
|
257 |
+
- batch_size: The number of samples in the batch.
|
258 |
+
|
259 |
+
Steps:
|
260 |
+
1. Generate a masking matrix to identify off-diagonal elements.
|
261 |
+
2. Compute cosine similarities (i.e., logits) between text and protein embeddings.
|
262 |
+
3. Compute self-similarities for both protein and text embeddings.
|
263 |
+
4. Mask off-diagonal elements between swiss-prot and pfam in the similarity matrices.
|
264 |
+
5. Define ground truth by averaging the masked protein and text similarity matrices.
|
265 |
+
6. Compute the contrastive loss for the protein and text embeddings using the ground truth.
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
- Mean contrastive loss for the given batch of protein and text embeddings.
|
269 |
+
- The logits (cosine similarity matrix between text and protein embeddings).
|
270 |
+
|
271 |
+
Note: This function assumes a specific structure in the input batches, where corresponding positive samples
|
272 |
+
in the protein and text embeddings are arranged in a particular way, allowing for masking and contrastive loss calculation.
|
273 |
+
"""
|
274 |
+
|
275 |
+
# get off-diagonal masking matrix
|
276 |
+
mask = torch.zeros((2*batch_size, 2*batch_size))
|
277 |
+
# mask the bottom left quadrant diagonal
|
278 |
+
mask[batch_size:, :batch_size] = torch.eye(batch_size)
|
279 |
+
# mask the top right quadrant
|
280 |
+
mask[:batch_size, batch_size:] = torch.eye(batch_size)
|
281 |
+
# convert to correct device and convert to boolean
|
282 |
+
mask = mask.to(protein_embeddings.device).bool()
|
283 |
+
|
284 |
+
# matrix multiplication between model embeddings
|
285 |
+
logits = (text_embeddings @ protein_embeddings.T) / self.temperature
|
286 |
+
protein_similarity = protein_embeddings @ protein_embeddings.T
|
287 |
+
text_similarity = text_embeddings @ text_embeddings.T
|
288 |
+
|
289 |
+
# mask the off-diagonal between swiss-prot and pfam
|
290 |
+
mask_protein_similarity = self.set_inf(protein_similarity, mask)
|
291 |
+
mask_text_similarity = self.set_inf(text_similarity, mask)
|
292 |
+
mask_logits = self.set_inf(logits, mask)
|
293 |
+
|
294 |
+
# ground truth
|
295 |
+
targets = F.softmax(
|
296 |
+
(mask_protein_similarity + mask_text_similarity) / (2 * self.temperature), dim=-1
|
297 |
+
)
|
298 |
+
|
299 |
+
# compute loss
|
300 |
+
text_loss = self.cross_entropy(mask_logits, targets, reduction='none')
|
301 |
+
protein_loss = self.cross_entropy(mask_logits.T, targets.T, reduction='none')
|
302 |
+
loss = (protein_loss + text_loss) / 2.0
|
303 |
+
|
304 |
+
return (
|
305 |
+
loss.mean(),
|
306 |
+
mask_logits.detach().cpu()
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
def compute_intra_loss(
|
311 |
+
self,
|
312 |
+
protein_embeddings,
|
313 |
+
batch_size
|
314 |
+
) -> (
|
315 |
+
torch.Tensor,
|
316 |
+
torch.Tensor,
|
317 |
+
):
|
318 |
+
"""
|
319 |
+
Compute the intra-modal contrastive InfoNCE loss for protein embeddings.
|
320 |
+
|
321 |
+
Parameters:
|
322 |
+
- protein_embeddings: A tensor representing the embeddings of the protein sequences.
|
323 |
+
- batch_size: Batch size used for training.
|
324 |
+
|
325 |
+
Steps:
|
326 |
+
1. Normalize the protein embeddings using L2 normalization.
|
327 |
+
2. Compute the cosine similarity between the normalized embeddings.
|
328 |
+
3. Mask the diagonal of the cosine similarity matrix to avoid using a protein's similarity with itself.
|
329 |
+
4. Define positive examples by rolling the mask. The positive example for a given protein embedding is determined by an embedding half the batch size away.
|
330 |
+
5. Compute the InfoNCE loss using the masked cosine similarity matrix.
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
- Mean InfoNCE loss for the given batch of protein embeddings.
|
334 |
+
- The cosine similarity matrix.
|
335 |
+
|
336 |
+
Note: The underlying assumption is that in each batch, corresponding positive samples for a given protein embedding
|
337 |
+
lie half the batch size away. The function computes the negative log likelihood loss between these positive samples
|
338 |
+
and the entire batch.
|
339 |
+
"""
|
340 |
+
|
341 |
+
# l2 normalization
|
342 |
+
#norm_protein_embeddings = F.normalize(protein_embeddings, p=2, dim=1)
|
343 |
+
norm_protein_embeddings = protein_embeddings
|
344 |
+
|
345 |
+
# cosine similarity
|
346 |
+
cosine_similarity = (norm_protein_embeddings @ norm_protein_embeddings.T) / self.temperature
|
347 |
+
|
348 |
+
# mask cosine similarity matrix
|
349 |
+
sample_size = protein_embeddings.shape[0]
|
350 |
+
mask = torch.eye(sample_size, device=cosine_similarity.device, dtype=torch.bool)
|
351 |
+
#cosine_similarity.masked_fill_(mask, float(-9e15))
|
352 |
+
cosine_similarity = self.set_inf(cosine_similarity, mask)
|
353 |
+
|
354 |
+
# Find positive example -> batch_size //2 away from the original example (swiss-prot<>pfam)
|
355 |
+
pos_mask = mask.roll(shifts=mask.shape[0]//2, dims=0)
|
356 |
+
|
357 |
+
# InfoNCE loss
|
358 |
+
nll = -cosine_similarity[pos_mask] + torch.logsumexp(cosine_similarity, dim=-1)
|
359 |
+
|
360 |
+
return (
|
361 |
+
nll.mean(),
|
362 |
+
cosine_similarity.cpu(),
|
363 |
+
)
|
364 |
+
|
365 |
+
def set_inf(
|
366 |
+
self,
|
367 |
+
tensor: torch.Tensor,
|
368 |
+
mask: torch.Tensor
|
369 |
+
) -> torch.Tensor:
|
370 |
+
# Determine replacement value based on tensor dtype
|
371 |
+
if tensor.dtype == torch.float32:
|
372 |
+
replace_value = -9e15
|
373 |
+
elif tensor.dtype == torch.float16:
|
374 |
+
replace_value = -1e4
|
375 |
+
else:
|
376 |
+
raise ValueError("Unsupported tensor dtype for this operation.")
|
377 |
+
|
378 |
+
# Use masked_fill_ to replace positions in tensor where mask is True with the specified value
|
379 |
+
tensor.masked_fill_(mask, replace_value)
|
380 |
+
|
381 |
+
return tensor
|
382 |
+
|
383 |
+
def cross_entropy(
|
384 |
+
self,
|
385 |
+
preds: torch.Tensor,
|
386 |
+
targets: torch.Tensor,
|
387 |
+
reduction: str='none'
|
388 |
+
) -> torch.Tensor:
|
389 |
+
|
390 |
+
# compute categorical cross entropy
|
391 |
+
log_softmax = nn.LogSoftmax(dim=-1)
|
392 |
+
loss = (-targets * log_softmax(preds)).sum(1)
|
393 |
+
|
394 |
+
if reduction == 'none':
|
395 |
+
return loss
|
396 |
+
elif reduction == 'mean':
|
397 |
+
return loss.mean()
|
398 |
+
else:
|
399 |
+
assert False, print('Choose either "none" or "mean" for reduction argument')
|
400 |
+
|
401 |
+
def compute_masked_lang_loss(
|
402 |
+
self,
|
403 |
+
logits_masked: torch.Tensor,
|
404 |
+
targets: torch.Tensor,
|
405 |
+
targets_masked: torch.Tensor,
|
406 |
+
mask_token_id: torch.Tensor
|
407 |
+
) -> torch.Tensor:
|
408 |
+
|
409 |
+
"""
|
410 |
+
Compute the masked language model loss for BERT-like architectures.
|
411 |
+
|
412 |
+
Given a batch of logits predicted for masked positions and their corresponding target tokens, this function
|
413 |
+
computes the cross-entropy loss between the predicted logits and the true labels, but only for positions
|
414 |
+
that have been masked in the input.
|
415 |
+
|
416 |
+
Parameters:
|
417 |
+
- logits_masked: Predicted token logits for masked positions from the model.
|
418 |
+
Shape: (batch_size, seq_len, vocab_size).
|
419 |
+
- targets: True token IDs for each position in the input sequence.
|
420 |
+
Shape: (batch_size, seq_len).
|
421 |
+
- targets_masked: Token IDs for the input sequence, including masked positions.
|
422 |
+
Shape: (batch_size, seq_len).
|
423 |
+
- mask_token_id: The ID corresponding to the [MASK] token in the vocabulary.
|
424 |
+
|
425 |
+
Steps:
|
426 |
+
1. Compute the cross-entropy loss between predicted logits and true labels across all positions.
|
427 |
+
2. For each sample in the batch, locate the positions that were masked.
|
428 |
+
3. Extract the loss values corresponding to these masked positions.
|
429 |
+
4. Compute and return the mean of these extracted loss values across the batch.
|
430 |
+
|
431 |
+
Returns:
|
432 |
+
- Mean cross-entropy loss for masked positions across the batch.
|
433 |
+
|
434 |
+
Note: This function focuses exclusively on masked positions in the input, as is typical for the MLM objective
|
435 |
+
in BERT-like models. It disregards unmasked positions.
|
436 |
+
"""
|
437 |
+
|
438 |
+
# compute the masked langauge objective loss for masked logits
|
439 |
+
loss_func = nn.CrossEntropyLoss(reduction='none')
|
440 |
+
loss_mask = loss_func(
|
441 |
+
logits_masked.permute(0, 2, 1), # (batch_size, vocab_size, seq_len)
|
442 |
+
targets.squeeze(1) # (batch_size, seq_len)
|
443 |
+
)
|
444 |
+
|
445 |
+
# list to append loss values
|
446 |
+
batch_loss = []
|
447 |
+
|
448 |
+
for ii, target_mask_sample in enumerate(targets_masked):
|
449 |
+
|
450 |
+
# locate mask positions
|
451 |
+
masked_positions = (target_mask_sample == mask_token_id).tolist()
|
452 |
+
# extract the loss values at those masked positions
|
453 |
+
loss_mask_sample = loss_mask[ii][masked_positions]
|
454 |
+
|
455 |
+
# append mean loss value for a given batch sample
|
456 |
+
if loss_mask_sample.numel() > 0:
|
457 |
+
batch_loss.append(torch.mean(loss_mask_sample).unsqueeze(0))
|
458 |
+
|
459 |
+
if len(loss_mask_sample) > 0:
|
460 |
+
loss_mask_mean = torch.mean(torch.cat(batch_loss))
|
461 |
+
else:
|
462 |
+
# handle the case where there are no masked positions in any sample
|
463 |
+
loss_mask_mean = torch.tensor(0.0, device=logits_masked.device)
|
464 |
+
|
465 |
+
return loss_mask_mean
|
466 |
+
|
467 |
+
|
468 |
+
###############
|
469 |
+
# Facilitator #
|
470 |
+
###############
|
471 |
+
|
472 |
+
|
473 |
+
class Facilitator(nn.Module):
|
474 |
+
|
475 |
+
def __init__(self,
|
476 |
+
in_dim: int, # Input dimension
|
477 |
+
hid_dim: int, # Hidden layer dimension
|
478 |
+
out_dim: int, # Output dimension
|
479 |
+
dropout: float = 0. # Dropout rate
|
480 |
+
):
|
481 |
+
super().__init__()
|
482 |
+
|
483 |
+
# Main neural network structure
|
484 |
+
self.main = nn.Sequential(
|
485 |
+
weight_norm(nn.Linear(in_dim, hid_dim), dim=None), # Weight-normalized linear layer
|
486 |
+
nn.GELU(), # GELU activation function
|
487 |
+
nn.Dropout(dropout, inplace=True), # Dropout layer
|
488 |
+
weight_norm(nn.Linear(hid_dim, out_dim), dim=None) # Weight-normalized output layer
|
489 |
+
)
|
490 |
+
|
491 |
+
def forward(self, x):
|
492 |
+
# Forward pass through the network
|
493 |
+
return self.main(x)
|
494 |
+
|
495 |
+
def compute_loss(self, output: torch.Tensor, target: torch.Tensor, loss_option='MSE') -> torch.Tensor:
|
496 |
+
# Compute loss based on the chosen loss_option ('MSE' or 'MMD')
|
497 |
+
if loss_option == 'MSE':
|
498 |
+
return Facilitator.compute_MSE(output, target)
|
499 |
+
elif loss_option == 'MMD':
|
500 |
+
return Facilitator.compute_mmd(output, target)
|
501 |
+
else:
|
502 |
+
return ValueError("Invalid loss option")
|
503 |
+
|
504 |
+
@staticmethod
|
505 |
+
def compute_MSE(output, target):
|
506 |
+
# Compute Mean Squared Error between output and target
|
507 |
+
mse_loss = nn.MSELoss()
|
508 |
+
loss = mse_loss(output, target)
|
509 |
+
return loss
|
510 |
+
|
511 |
+
@staticmethod
|
512 |
+
def compute_kernel(
|
513 |
+
x: torch.FloatTensor,
|
514 |
+
y: torch.FloatTensor
|
515 |
+
) -> torch.FloatTensor:
|
516 |
+
"""
|
517 |
+
Compute the Gaussian RBF kernel between tensors x and y
|
518 |
+
"""
|
519 |
+
|
520 |
+
# Get the sizes of each mini-batch
|
521 |
+
x_size, y_size = x.shape[0], y.shape[0]
|
522 |
+
|
523 |
+
# Dimension based on z size
|
524 |
+
dim = x.shape[1]
|
525 |
+
|
526 |
+
x = x.view(x_size, 1, dim)
|
527 |
+
y = y.view(1, y_size, dim)
|
528 |
+
|
529 |
+
x_core = x.expand(x_size, y_size, dim)
|
530 |
+
y_core = y.expand(x_size, y_size, dim)
|
531 |
+
|
532 |
+
# Gaussian RBF kernel computation
|
533 |
+
return torch.exp(-(x_core - y_core).pow(2).mean(2) / dim)
|
534 |
+
|
535 |
+
@staticmethod
|
536 |
+
def compute_mmd(
|
537 |
+
x: torch.FloatTensor,
|
538 |
+
y: torch.FloatTensor
|
539 |
+
) -> torch.FloatTensor:
|
540 |
+
"""
|
541 |
+
Compute the Maximum Mean Discrepancy (MMD) between two distributions.
|
542 |
+
Args:
|
543 |
+
x: Samples from first distribution (z_t_to_p ~ q(z_p))
|
544 |
+
y: Samples from second distribution (z_p ~ p(z_p))
|
545 |
+
Returns:
|
546 |
+
MMD_loss: The MMD loss between the sampled distributions
|
547 |
+
"""
|
548 |
+
|
549 |
+
x_kernel = Facilitator.compute_kernel(x, x)
|
550 |
+
y_kernel = Facilitator.compute_kernel(y, y)
|
551 |
+
xy_kernel = Facilitator.compute_kernel(x, y)
|
552 |
+
|
553 |
+
# Calculate MMD loss
|
554 |
+
return x_kernel.mean() + y_kernel.mean() - 2 * xy_kernel.mean()
|
555 |
+
|
556 |
+
|
Stage1_source/preprocess.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import random_split, Dataset, DataLoader, Subset, ConcatDataset
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
+
import ast
|
6 |
+
import dask.dataframe as dd
|
7 |
+
import os
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from pytorch_lightning import LightningDataModule
|
10 |
+
from tqdm import tqdm
|
11 |
+
import gc
|
12 |
+
import psutil
|
13 |
+
import time
|
14 |
+
import copy
|
15 |
+
|
16 |
+
import esm
|
17 |
+
from esm import pretrained
|
18 |
+
from transformers import AutoTokenizer, AutoModel
|
19 |
+
|
20 |
+
|
21 |
+
########################################
|
22 |
+
# Dataset iterator with masking tokens #
|
23 |
+
########################################
|
24 |
+
|
25 |
+
class TextSeqPairing_Dataset(Dataset):
|
26 |
+
|
27 |
+
def __init__(self, args: any, df: pd.Series):
|
28 |
+
|
29 |
+
# dataframe
|
30 |
+
self.df = df
|
31 |
+
self.length = self.df.shape[0]
|
32 |
+
self.df_column_names = self.df.columns.tolist()
|
33 |
+
self.protein_sequence_list = self.df[args.sequence_keyword].tolist()
|
34 |
+
self.text_captions_list = self.df['[final]text_caption'].tolist()
|
35 |
+
self.accession_id_list = self.df[args.id_keyword].tolist()
|
36 |
+
|
37 |
+
# parameters
|
38 |
+
self.text_max_length = args.text_max_length # max BERT sequence tokenization length
|
39 |
+
self.seq_max_length = 1024 # max ESM model
|
40 |
+
|
41 |
+
# tokenizers
|
42 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(args.text_model_path) # for text encoder
|
43 |
+
_, self.sequence_tokenizer = pretrained.load_model_and_alphabet(args.seq_model_path) # for protein encoder
|
44 |
+
|
45 |
+
def caption_tokenizer(self, batch_captions: list) -> dict:
|
46 |
+
|
47 |
+
# transform input text tokens
|
48 |
+
text_inputs = self.text_tokenizer.batch_encode_plus(
|
49 |
+
batch_captions,
|
50 |
+
truncation=True,
|
51 |
+
max_length=self.text_max_length,
|
52 |
+
padding='max_length',
|
53 |
+
return_tensors='pt',
|
54 |
+
return_attention_mask=True,
|
55 |
+
return_token_type_ids=False
|
56 |
+
)
|
57 |
+
|
58 |
+
# track the original natural language captions
|
59 |
+
text_inputs['orig_captions'] = batch_captions
|
60 |
+
|
61 |
+
return text_inputs
|
62 |
+
|
63 |
+
def protein_tokenizer(self, batch_sequences: list) -> dict:
|
64 |
+
|
65 |
+
# perpare data for ESM
|
66 |
+
batch_converter = self.sequence_tokenizer.get_batch_converter()
|
67 |
+
batch_labels, batch_str, batch_tokens = batch_converter(batch_sequences)
|
68 |
+
|
69 |
+
# pad sequences
|
70 |
+
batch_tokens = torch.cat((
|
71 |
+
batch_tokens,
|
72 |
+
torch.ones((1,1024-batch_tokens.shape[1])),
|
73 |
+
), dim=-1
|
74 |
+
)
|
75 |
+
|
76 |
+
sequence_inputs = {
|
77 |
+
'protein_sequence_labels': batch_labels, # UniProtKB id
|
78 |
+
'protein_sequence_str': batch_str, # original protein sequence (in amino acids)
|
79 |
+
'protein_sequence_tokens': batch_tokens.long() # training data
|
80 |
+
}
|
81 |
+
|
82 |
+
return sequence_inputs
|
83 |
+
|
84 |
+
|
85 |
+
def __getitem__(self, idx: torch.Tensor) -> (
|
86 |
+
dict,
|
87 |
+
dict
|
88 |
+
):
|
89 |
+
|
90 |
+
protein_sequence = self.protein_sequence_list[idx]
|
91 |
+
text_captions = self.text_captions_list[idx]
|
92 |
+
accession_id = self.accession_id_list[idx]
|
93 |
+
|
94 |
+
# prepare protein sequence in ESM format (e.g. tuple: (header, sequence)):
|
95 |
+
batch_sequences = [
|
96 |
+
(accession_id, protein_sequence)
|
97 |
+
]
|
98 |
+
|
99 |
+
text_data = self.caption_tokenizer(batch_captions=[text_captions])
|
100 |
+
protein_data = self.protein_tokenizer(batch_sequences=batch_sequences)
|
101 |
+
|
102 |
+
return (
|
103 |
+
text_data['input_ids'],
|
104 |
+
protein_data['protein_sequence_tokens']
|
105 |
+
)
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
return self.length
|
109 |
+
|
110 |
+
|
111 |
+
######################
|
112 |
+
# Default DataModule #
|
113 |
+
######################
|
114 |
+
|
115 |
+
|
116 |
+
class Default_DataModule(LightningDataModule):
|
117 |
+
def __init__(self, args):
|
118 |
+
super().__init__()
|
119 |
+
self.args = args
|
120 |
+
|
121 |
+
# construct dataset iterator
|
122 |
+
dataset_options = {
|
123 |
+
'default': TextSeqPairing_Dataset,
|
124 |
+
'masked': MaskTextSeqPairing_Dataset,
|
125 |
+
'pfam': Pfam_TextSeqPairing_Dataset,
|
126 |
+
'pfam_ablated': Pfam_TextSeqPairing_Dataset
|
127 |
+
}
|
128 |
+
|
129 |
+
self.dataset_class = dataset_options.get(args.dataset_type, TextSeqPairing_Dataset)
|
130 |
+
|
131 |
+
def prepare_data(self):
|
132 |
+
pass
|
133 |
+
|
134 |
+
def setup(self, stage=None):
|
135 |
+
|
136 |
+
if self.trainer is not None:
|
137 |
+
print(f"Number of GPUs: {self.trainer.world_size}")
|
138 |
+
print(f"Current GPU index: {self.trainer.local_rank}")
|
139 |
+
|
140 |
+
# Load Swiss-Prot data
|
141 |
+
df = self.load_swiss_prot()
|
142 |
+
|
143 |
+
# Split the dataframe into train and valid sets
|
144 |
+
train_df, valid_df = train_test_split(
|
145 |
+
df,
|
146 |
+
test_size=self.args.valid_size,
|
147 |
+
random_state=self.args.seed
|
148 |
+
)
|
149 |
+
|
150 |
+
print(f"Available memory after pfam_df: {check_available_memory()} GB")
|
151 |
+
|
152 |
+
# Define datasets and dataloaders
|
153 |
+
self.train_dataset = self.dataset_class(args=self.args, df=train_df)
|
154 |
+
self.valid_dataset = self.dataset_class(args=self.args, df=valid_df)
|
155 |
+
|
156 |
+
def load_swiss_prot(self) -> pd.Series:
|
157 |
+
# Load and preprocess data (called on each GPU/TPU in DDP)
|
158 |
+
print(f'Load Swiss-Prot data...')
|
159 |
+
|
160 |
+
# Load Swiss-Prot data
|
161 |
+
df = pd.read_csv(os.path.expanduser(self.args.data_path))
|
162 |
+
df = df[df['protein_sequence'].apply(lambda seq: len(seq) <= 1022)]
|
163 |
+
|
164 |
+
return df
|
165 |
+
|
166 |
+
def train_dataloader(self):
|
167 |
+
return DataLoader(
|
168 |
+
self.train_dataset,
|
169 |
+
batch_size=self.args.batch_size,
|
170 |
+
num_workers=self.args.num_workers,
|
171 |
+
shuffle=True,
|
172 |
+
pin_memory=True
|
173 |
+
)
|
174 |
+
|
175 |
+
def val_dataloader(self):
|
176 |
+
return DataLoader(
|
177 |
+
self.valid_dataset,
|
178 |
+
batch_size=self.args.batch_size,
|
179 |
+
num_workers=self.args.num_workers,
|
180 |
+
pin_memory=True
|
181 |
+
)
|
182 |
+
|
183 |
+
def test_dataloader(self):
|
184 |
+
# Define test dataloader if needed
|
185 |
+
pass
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
################################
|
190 |
+
# Facilitator Dataset Iterator #
|
191 |
+
################################
|
192 |
+
|
193 |
+
|
194 |
+
class Facilitator_Dataset(Dataset):
|
195 |
+
|
196 |
+
def __init__(self, args: any, dataset: dict):
|
197 |
+
|
198 |
+
# Determine the device based on the number of GPUs
|
199 |
+
device = 'cuda' if args.num_gpus >= 1 else 'cpu'
|
200 |
+
|
201 |
+
# Check if text_embeddings is a list and convert to a tensor
|
202 |
+
if isinstance(dataset['text_embedding'], list):
|
203 |
+
# Convert list elements to tensors if they are not already
|
204 |
+
text_emb_tensors = [torch.tensor(emb).to(device) if not isinstance(emb, torch.Tensor) else emb.to(device) for emb in dataset['text_embedding']]
|
205 |
+
# Stack the list of tensors
|
206 |
+
self.text_embeddings = torch.stack(text_emb_tensors)
|
207 |
+
else:
|
208 |
+
self.text_embeddings = dataset['text_embedding'].to(device)
|
209 |
+
|
210 |
+
# Check if protein_embeddings is a list and convert to a tensor
|
211 |
+
if isinstance(dataset['protein_embedding'], list):
|
212 |
+
# Convert list elements to tensors if they are not already
|
213 |
+
protein_emb_tensors = [torch.tensor(emb).to(device) if not isinstance(emb, torch.Tensor) else emb.to(device) for emb in dataset['protein_embedding']]
|
214 |
+
# Stack the list of tensors
|
215 |
+
self.protein_embeddings = torch.stack(protein_emb_tensors)
|
216 |
+
else:
|
217 |
+
self.protein_embeddings = dataset['protein_embedding'].to(device)
|
218 |
+
|
219 |
+
|
220 |
+
def __getitem__(self, idx: torch.Tensor) -> (
|
221 |
+
torch.Tensor,
|
222 |
+
torch.Tensor
|
223 |
+
):
|
224 |
+
|
225 |
+
|
226 |
+
z_t = self.text_embeddings[idx]
|
227 |
+
z_p = self.protein_embeddings[idx]
|
228 |
+
|
229 |
+
return (
|
230 |
+
z_t,
|
231 |
+
z_p
|
232 |
+
)
|
233 |
+
|
234 |
+
|
235 |
+
def __len__(self):
|
236 |
+
return len(self.text_embeddings)
|
237 |
+
|
238 |
+
###########################
|
239 |
+
# Facilitator Data Module #
|
240 |
+
###########################
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
class Facilitator_DataModule(LightningDataModule):
|
245 |
+
def __init__(self, args):
|
246 |
+
super().__init__()
|
247 |
+
|
248 |
+
self.args = args
|
249 |
+
|
250 |
+
self.OOD_pfam_labels = [
|
251 |
+
'PF18369', # Polyketide synthase dimerisation element domain
|
252 |
+
'PF04680', # Opioid growth factor receptor repeat
|
253 |
+
'PF17988', # VEGFR-2 Transmembrane domain
|
254 |
+
'PF12325', # TATA element modulatory factor 1 TATA binding
|
255 |
+
'PF03272', # Putative mucin or carbohydrate-binding module
|
256 |
+
'PF03938', # Outer membrane protein (OmpH-like)
|
257 |
+
'PF17724', # Family of unknown function (DUF5568)
|
258 |
+
'PF10696', # Protein of unknown function
|
259 |
+
'PF11968', # 25S rRNA (adenine(2142)-N(1))-methyltransferase, Bmt2
|
260 |
+
'PF04153' # NOT2/NOT3/NOT5 C-terminal
|
261 |
+
]
|
262 |
+
|
263 |
+
|
264 |
+
# prepare embeddings
|
265 |
+
#self.embedding_data = torch.load(args.swissprot_data_path)
|
266 |
+
# dataset iterator
|
267 |
+
#dataset = Facilitator_Dataset(args=args, dataset=self.embedding_data)
|
268 |
+
# create a clone of the dataset
|
269 |
+
#cloned_dataset = copy.deepcopy(dataset)
|
270 |
+
|
271 |
+
# Get indices and split them
|
272 |
+
#indices = list(range(len(dataset)))
|
273 |
+
#train_indices, valid_indices = train_test_split(indices, test_size=args.valid_size, random_state=args.seed)
|
274 |
+
|
275 |
+
# create full dataloader
|
276 |
+
#self.all_dataloader = DataLoader(cloned_dataset, batch_size=args.batch_size, shuffle=False)
|
277 |
+
|
278 |
+
# Create PyTorch DataLoader using the indices
|
279 |
+
#self.train_sampler = Subset(dataset, train_indices)
|
280 |
+
#self.valid_sampler = Subset(dataset, valid_indices)
|
281 |
+
#train_dataloader = DataLoader(train_sampler, batch_size=args.batch_size, shuffle=True)
|
282 |
+
#valid_dataloader = DataLoader(test_sampler, batch_size=args.batch_size, shuffle=False)
|
283 |
+
|
284 |
+
##########################################
|
285 |
+
# Load Stage 1 SwissProt+Pfam Embeddings #
|
286 |
+
##########################################
|
287 |
+
|
288 |
+
# initialize the embedding data to None
|
289 |
+
self.swissprot_data, self.pfam_data = None, None
|
290 |
+
|
291 |
+
# get both the swissprot and pfam dataset iterator in one
|
292 |
+
if (args.swissprot_data_path != 'None') and (args.pfam_data_path != 'None'):
|
293 |
+
print('Load both SwissProt and Pfam dataset...')
|
294 |
+
self.train_dataset, self.valid_dataset, self.all_swiss_dataloader, self.all_pfam_dataloader = self.load_both()
|
295 |
+
|
296 |
+
# get the swissprot dataset iterator
|
297 |
+
elif args.pfam_data_path == 'None':
|
298 |
+
print('Load SwissProt dataset...')
|
299 |
+
self.train_dataset, self.valid_dataset, self.all_swiss_dataloader = self.load_swissprot()
|
300 |
+
self.all_pfam_dataloader = None
|
301 |
+
|
302 |
+
# get the pfam dataset iterator
|
303 |
+
elif args.swissprot_data_path == 'None':
|
304 |
+
print('Load Pfam dataset...')
|
305 |
+
self.train_dataset, self.valid_dataset, self.all_pfam_dataloader = self.load_pfam()
|
306 |
+
self.all_swiss_dataloader = None
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
def load_swissprot(self):
|
311 |
+
|
312 |
+
# prepare embeddings
|
313 |
+
self.swissprot_data = torch.load(self.args.swissprot_data_path)
|
314 |
+
|
315 |
+
# dataset iterator
|
316 |
+
swiss_dataset = Facilitator_Dataset(args=self.args, dataset=self.swissprot_data)
|
317 |
+
# create a clone of the dataset
|
318 |
+
cloned_swiss_dataset = copy.deepcopy(swiss_dataset)
|
319 |
+
|
320 |
+
# Get indices and split them
|
321 |
+
indices = list(range(len(swiss_dataset)))
|
322 |
+
train_indices, valid_indices = train_test_split(indices, test_size=self.args.valid_size, random_state=self.args.seed)
|
323 |
+
|
324 |
+
# Create Pytorch iterator using the indices
|
325 |
+
swiss_train_subset = Subset(swiss_dataset, train_indices)
|
326 |
+
swiss_valid_subset = Subset(swiss_dataset, valid_indices)
|
327 |
+
|
328 |
+
# Create Pytorch dataloader on all samples
|
329 |
+
swiss_all_dataloader = DataLoader(cloned_swiss_dataset, batch_size=self.args.batch_size, shuffle=False)
|
330 |
+
|
331 |
+
|
332 |
+
return (
|
333 |
+
swiss_train_subset,
|
334 |
+
swiss_valid_subset,
|
335 |
+
swiss_all_dataloader
|
336 |
+
)
|
337 |
+
|
338 |
+
|
339 |
+
def load_pfam(self):
|
340 |
+
|
341 |
+
# prepare embeddings
|
342 |
+
self.pfam_data = torch.load(self.args.pfam_data_path)
|
343 |
+
|
344 |
+
# dataset iterator
|
345 |
+
pfam_dataset = Facilitator_Dataset(args=self.args, dataset=self.pfam_data)
|
346 |
+
# create a clone of the dataset
|
347 |
+
cloned_pfam_dataset = copy.deepcopy(pfam_dataset)
|
348 |
+
|
349 |
+
# Get indices and split them
|
350 |
+
indices = list(range(len(pfam_dataset)))
|
351 |
+
train_indices, valid_indices = train_test_split(indices, test_size=self.args.valid_size, random_state=self.args.seed)
|
352 |
+
|
353 |
+
# Create Pytorch Dataloader using the indices
|
354 |
+
pfam_train_subset = Subset(pfam_dataset, train_indices)
|
355 |
+
pfam_valid_subset = Subset(pfam_dataset, valid_indices)
|
356 |
+
|
357 |
+
# Create Pytorch dataloader on all samples
|
358 |
+
pfam_all_dataloader = DataLoader(cloned_pfam_dataset, batch_size=self.args.batch_size, shuffle=False)
|
359 |
+
|
360 |
+
return (
|
361 |
+
pfam_train_subset,
|
362 |
+
pfam_valid_subset,
|
363 |
+
pfam_all_dataloader
|
364 |
+
)
|
365 |
+
|
366 |
+
|
367 |
+
def load_both(self):
|
368 |
+
|
369 |
+
# get swissprot
|
370 |
+
swissprot_train_subset, swissprot_valid_subset, swissprot_all_dataloader = self.load_swissprot()
|
371 |
+
|
372 |
+
# get pfam
|
373 |
+
pfam_train_subset, pfam_valid_subset, pfam_all_dataloader = self.load_pfam()
|
374 |
+
|
375 |
+
# combined subsets
|
376 |
+
combined_train_subset = ConcatDataset([swissprot_train_subset, pfam_train_subset])
|
377 |
+
combined_valid_subset = ConcatDataset([swissprot_valid_subset, pfam_valid_subset])
|
378 |
+
|
379 |
+
return (
|
380 |
+
combined_train_subset,
|
381 |
+
combined_valid_subset,
|
382 |
+
swissprot_all_dataloader,
|
383 |
+
pfam_all_dataloader
|
384 |
+
)
|
385 |
+
|
386 |
+
|
387 |
+
def train_dataloader(self):
|
388 |
+
return DataLoader(
|
389 |
+
self.train_dataset,
|
390 |
+
#self.train_sampler,
|
391 |
+
batch_size=self.args.batch_size,
|
392 |
+
#num_workers=self.args.num_workers,
|
393 |
+
shuffle=True,
|
394 |
+
#pin_memory=True
|
395 |
+
)
|
396 |
+
|
397 |
+
def val_dataloader(self):
|
398 |
+
return DataLoader(
|
399 |
+
self.valid_dataset,
|
400 |
+
#self.valid_sampler,
|
401 |
+
batch_size=self.args.batch_size,
|
402 |
+
#num_workers=self.args.num_workers,
|
403 |
+
#pin_memory=True
|
404 |
+
)
|
405 |
+
|
406 |
+
def test_dataloader(self):
|
407 |
+
# Define test dataloader if needed
|
408 |
+
pass
|
409 |
+
|
410 |
+
|
stage1_config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data_path": "None",
|
3 |
+
"pfam_data_path": "None",
|
4 |
+
"tb_logger_path": "None",
|
5 |
+
"tb_logger_folder": "None",
|
6 |
+
"version_name": "None",
|
7 |
+
"model_checkpoint_path": "/project/andrewferguson/niksapraljak/Project_ProtARDM/logs/Stage1_final_models/checkpoints/Pretraining_PENCiL_45M/epoch=19-step=116600.ckpt",
|
8 |
+
"output_dict_path": "/project/ranganathanr/niksapraljak/BioM3_PDZ/outputs/output_dict.pt",
|
9 |
+
"valid_size": 0.2,
|
10 |
+
"epochs": 10,
|
11 |
+
"acc_grad_batches": 1,
|
12 |
+
"batch_size": 80,
|
13 |
+
"num_workers": 12,
|
14 |
+
"weight_decay": "5e-7",
|
15 |
+
"patience": 1,
|
16 |
+
"factor": 0.8,
|
17 |
+
"temperature": 0.8,
|
18 |
+
"seed": 42,
|
19 |
+
"num_gpus": 1,
|
20 |
+
"precision": "16",
|
21 |
+
"dataset_type": "default",
|
22 |
+
"model_type": "pfam",
|
23 |
+
"fast_dev_run": 0,
|
24 |
+
"sequence_keyword": "protein_sequence",
|
25 |
+
"id_keyword": "primary_Accession",
|
26 |
+
"dataset_source": "swissprot",
|
27 |
+
"pfam_data_split_label": "0",
|
28 |
+
"base_lr": 0.0016,
|
29 |
+
"global_batch_size": 80,
|
30 |
+
"lr": 0.0005,
|
31 |
+
"seq_model_path": "/project/ranganathanr/niksapraljak/TextDiff_model_weights/Stage_1/pretrained_models/esm2_t33_650M_UR50D.pt",
|
32 |
+
"pretrained_seq": true,
|
33 |
+
"trainable_seq": true,
|
34 |
+
"rep_layer": 33,
|
35 |
+
"protein_encoder_embedding": 1280,
|
36 |
+
"protein_encoder_lr": 0.0005,
|
37 |
+
"pLM_n_layers_to_finetune": 1,
|
38 |
+
"text_model_path": "/project/ranganathanr/niksapraljak/TextDiff_model_weights/Stage_1/pretrained_models/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
|
39 |
+
"pretrained_text": true,
|
40 |
+
"trainable_text": true,
|
41 |
+
"text_encoder_embedding": 768,
|
42 |
+
"text_encoder_lr": 0.0005,
|
43 |
+
"text_max_length": 512,
|
44 |
+
"bLM_n_layers_to_finetune": 1,
|
45 |
+
"proj_embedding_dim": 512,
|
46 |
+
"dropout": 0.1,
|
47 |
+
"head_lr": 0.0005,
|
48 |
+
"inference_data_path": "/project/ranganathanr/niksapraljak/BioM3_PDZ/data/test_prompts_PDZ_swissprot_pfam_dataset.csv",
|
49 |
+
"inference_output_path": "/project/ranganathanr/niksapraljak/BioM3_PDZ/outputs/Stage1_test_prompts_PDZ.pt"
|
50 |
+
}
|