Niksa Praljak
commited on
Commit
•
8b00415
1
Parent(s):
b2627ff
Add hardware details in README and make proteoscribe updates
Browse files- README.md +20 -0
- run_ProteoScribe_sample.py +1 -2
README.md
CHANGED
@@ -16,6 +16,26 @@ doi: https://doi.org/10.1101/2024.11.11.622734
|
|
16 |
|
17 |
[Read the paper on bioRxiv](https://www.biorxiv.org/content/10.1101/2024.11.11.622734v1)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
## Software Requirements
|
20 |
|
21 |
### Required Dependencies
|
|
|
16 |
|
17 |
[Read the paper on bioRxiv](https://www.biorxiv.org/content/10.1101/2024.11.11.622734v1)
|
18 |
|
19 |
+
|
20 |
+
## Hardware Requirements and Testing Environment
|
21 |
+
|
22 |
+
This code has been tested on the following High-Performance Computing (HPC) environment:
|
23 |
+
|
24 |
+
### Hardware Specifications
|
25 |
+
- **CPU**: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz
|
26 |
+
- **CPU Cores**: 32 (2 NUMA nodes with 16 cores each)
|
27 |
+
- **GPU**: NVIDIA A100-PCIE-40GB
|
28 |
+
- **RAM**: 251GB
|
29 |
+
- **Operating System**: CentOS Linux 8
|
30 |
+
|
31 |
+
### Compute Environment
|
32 |
+
- **Job Scheduler**: Slurm
|
33 |
+
- **Allocation**:
|
34 |
+
- Number of nodes: 1
|
35 |
+
- CPUs per task: 12
|
36 |
+
- Memory per node: 93.7GB
|
37 |
+
- GPUs per node: 1 (A100)
|
38 |
+
|
39 |
## Software Requirements
|
40 |
|
41 |
### Required Dependencies
|
run_ProteoScribe_sample.py
CHANGED
@@ -152,8 +152,7 @@ if __name__ == '__main__':
|
|
152 |
config_args = convert_to_namespace(config_dict)
|
153 |
|
154 |
# Set device if not specified in config
|
155 |
-
if
|
156 |
-
config_args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
157 |
|
158 |
# load test dataset
|
159 |
embedding_dataset = torch.load(config_args_parser.input_path)
|
|
|
152 |
config_args = convert_to_namespace(config_dict)
|
153 |
|
154 |
# Set device if not specified in config
|
155 |
+
config_args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
156 |
|
157 |
# load test dataset
|
158 |
embedding_dataset = torch.load(config_args_parser.input_path)
|