File size: 86,529 Bytes
40ed493 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: "How to get single UnidirectionalSequenceRnnOp in tflite model ### Issue Type\r\
\n\r\nSupport\r\n\r\n### Source\r\n\r\nsource\r\n\r\n### Tensorflow Version\r\n\
\r\n2.8\r\n\r\n### Custom Code\r\n\r\nYes\r\n\r\n### OS Platform and Distribution\r\
\n\r\nUbuntu 18.04\r\n\r\nAccording to https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc\
\ there is `kUnidirectionalSequenceRnnOp` as a single operation in tflite, could\
\ you give a python code example - how can I get this? For example - this code\
\ for LSTM gives tflite with one UnidirectionalSequenceLSTM Op.\r\n```py\r\n#\
\ NOTE tested with TF 2.8.0\r\nimport tensorflow as tf\r\nimport numpy as np\r\
\n\r\nfrom tensorflow import keras\r\n\r\n\r\nmodel = keras.Sequential()\r\nshape\
\ = (4, 4)\r\n\r\nmodel.add(keras.layers.InputLayer(input_shape=shape, batch_size=1))\r\
\nmodel.add(keras.layers.LSTM(2, input_shape=shape))\r\n```\r\n\r\
\nHow can I do same for UnidirectionalSequenceRnn?"
- text: "[Feature Request] GELU activation with the Hexagon delegate **System information**\r\
\n- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 20.04\r\n\
- TensorFlow installed from (source or binary): binary\r\n- TensorFlow version\
\ (or github SHA if from source): 2.9.1\r\n\r\nI think I'd be able to implement\
\ this myself, but wanted to see if there was any interest in including this upstream.\
\ Most of this I'm writing out to make sure my own understanding is correct.\r\
\n\r\n### The problem\r\n\r\nI'd like to add support for the GELU op to the Hexagon\
\ Delegate. The motivation for this is mostly for use with [DistilBERT](https://huggingface.co/distilbert-base-multilingual-cased),\
\ which uses this activation function in its feedforward network layers. (Also\
\ used by BERT, GPT-3, RoBERTa, etc.)\r\n\r\nAdding this as a supported op for\
\ the Hexagon delegate would avoid creating a graph partition/transferring between\
\ DSP<-->CPU each time the GELU activation function is used.\r\n\r\n### How I'd\
\ implement this\r\n\r\nGELU in TF Lite is implemented as a lookup table when\
\ there are integer inputs ([here](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/activations.cc#L120-L140)\
\ and [here](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/internal/reference/gelu.h#L37-L53)).\r\
\n\r\nThis same approach could be used for the Hexagon delegate, as it has int8/uint8\
\ data types and also supports lookup tables.\r\n\r\nI'd plan to do this by adding\
\ a new op builder in the delegate, populating a lookup table for each node as\
\ is currently done for the CPU version of the op, and then using the [Gather_8](https://source.codeaurora.org/quic/hexagon_nn/nnlib/tree/hexagon/ops/src/op_gather.c)\
\ nnlib library function to do the lookup.\r\n\r\n### Possible workaround\r\n\
\r\nA workaround I thought of:\r\n\r\nI'm going to try removing the [pattern matching](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/transforms/optimize_patterns.td#L1034-L1095)\
\ for approximate GELU in MLIR, and then using the approximate version of GELU\
\ (so that using tanh and not Erf). This will probably be slower, but should\
\ let me keep execution on the DSP.\r\n\r\nSince this will then be tanh, addition,\
\ multiplication ops instead of GELU they should all be runnable by the DSP."
- text: "Data init API for TFLite Swift <details><summary>Click to expand!</summary>\
\ \n \n ### Issue Type\n\nFeature Request\n\n### Source\n\nsource\n\n### Tensorflow\
\ Version\n\n2.8+\n\n### Custom Code\n\nNo\n\n### OS Platform and Distribution\n\
\n_No response_\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n\
_No response_\n\n### Bazel version\n\n_No response_\n\n### GCC/Compiler version\n\
\n_No response_\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and\
\ memory\n\n_No response_\n\n### Current Behaviour?\n\n```shell\nThe current Swift\
\ API only has `init` functions from files on disk unlike the Java (Android) API\
\ which has a byte buffer initializer. It'd be convenient if the Swift API could\
\ initialize `Interpreters` from `Data`.\n```\n\n\n### Standalone code to reproduce\
\ the issue\n\n```shell\nNo code. This is a feature request\n```\n\n\n### Relevant\
\ log output\n\n_No response_</details>"
- text: "tf.distribute.MirroredStrategy for asynchronous training <details><summary>Click\
\ to expand!</summary> \r\n \r\n ### Issue Type\r\n\r\nFeature Request\r\n\r\n\
### Tensorflow Version\r\n\r\n2.8.1\r\n\r\n### Python version\r\n\r\n3.8.13\r\n\
\r\n### CUDA/cuDNN version\r\n\r\n11.8\r\n\r\n### Use Case\r\n\r\nI need to run\
\ multiple asynchronous copies of the same model on different slices of the dataset\
\ (e.g. with bootstrap sampling). There's no *good* way to do this in keras api\
\ that I'm aware of, although a couple of hacks exist. Would this use case be\
\ feasible with tf.distribute?\r\n\r\n### Feature Request\r\n\r\n`tf.distribute.MirroredStrategy`\
\ is a synchronous, data parallel strategy for distributed training across multiple\
\ devices on a single host worker.\r\n\r\nWould it be possible to modify this\
\ strategy to allow for asynchronous training of all model replicas, without computing\
\ the average gradient over all replicas to update weights? In this case each\
\ replica would need its own un-mirrored copy of model weights, and the update\
\ rule would depend only on the loss and gradients of each replica.\r\n\r\nThanks"
- text: "Build TensorFlow Lite for iOS failed!!!! Please go to Stack Overflow for\
\ help and support:\r\n\r\nhttps://stackoverflow.com/questions/tagged/tensorflow\r\
\n\r\nIf you open a GitHub issue, here is our policy:\r\n\r\n1. `bazel build --config=ios_arm64\
\ -c opt --cxxopt=--std=c++17 \\\\\r\n //tensorflow/lite/ios:TensorFlowLiteC_framework\r\
\n❯ bazel build --incompatible_run_shell_command_string=false --verbose_failures\
\ --config=ios_arm64 -c opt //tensorflow/lite/ios:TensorFlowLiteCMetal_framework\r\
\nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1\
\ --terminal_columns=170\r\nINFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\
\n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading\
\ rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\n 'build'\
\ options: --define framework_shared_object=true --define tsl_protobuf_header_only=true\
\ --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone\
\ -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive\
\ --enable_platform_specific_config --define=with_xla_support=true --config=short_logs\
\ --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library\
\ --experimental_link_static_libraries_once=false\r\nINFO: Reading rc options\
\ for 'build' from /Users/thao/Desktop/tensorflow/.tf_configure.bazelrc:\r\n \
\ 'build' options: --action_env PYTHON_BIN_PATH=/Users/thao/miniforge3/bin/python\
\ --action_env PYTHON_LIB_PATH=/Users/thao/miniforge3/lib/python3.10/site-packages\
\ --python_path=/Users/thao/miniforge3/bin/python\r\nINFO: Reading rc options\
\ for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\n 'build' options:\
\ --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/common,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\
\nINFO: Found applicable config definition build:short_logs in file /Users/thao/Desktop/tensorflow/.bazelrc:\
\ --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition\
\ build:v2 in file /Users/thao/Desktop/tensorflow/.bazelrc: --define=tf_api_version=2\
\ --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:ios_arm64\
\ in file /Users/thao/Desktop/tensorflow/.bazelrc: --config=ios --cpu=ios_arm64\r\
\nINFO: Found applicable config definition build:ios in file /Users/thao/Desktop/tensorflow/.bazelrc:\
\ --apple_platform_type=ios --apple_bitcode=embedded --copt=-fembed-bitcode --copt=-Wno-c++11-narrowing\
\ --noenable_platform_specific_config --copt=-w --cxxopt=-std=c++17 --host_cxxopt=-std=c++17\
\ --define=with_xla_support=false\r\nINFO: Build option --cxxopt has changed,\
\ discarding analysis cache.\r\nERROR: /private/var/tmp/_bazel_thao/26d40dc75f2c247e7283b353a9ab184f/external/local_config_cc/BUILD:48:19:\
\ in cc_toolchain_suite rule @local_config_cc//:toolchain: cc_toolchain_suite\
\ '@local_config_cc//:toolchain' does not contain a toolchain for cpu 'ios_arm64'\r\
\nERROR: /private/var/tmp/_bazel_thao/26d40dc75f2c247e7283b353a9ab184f/external/local_config_cc/BUILD:48:19:\
\ Analysis of target '@local_config_cc//:toolchain' failed\r\nERROR: Analysis\
\ of target '//tensorflow/lite/ios:TensorFlowLiteCMetal_framework' failed; build\
\ aborted: \r\nINFO: Elapsed time: 45.455s\r\nINFO: 0 processes.\r\nFAILED: Build\
\ did NOT complete successfully (66 packages loaded, 1118 targets configured)`\r\
\n\r\n**Here's why we have that policy**: TensorFlow developers respond to issues.\
\ We want to focus on work that benefits the whole community, e.g., fixing bugs\
\ and adding features. Support only helps individuals. GitHub also notifies thousands\
\ of people when issues are filed. We want them to see you communicating an interesting\
\ problem, rather than being redirected to Stack Overflow.\r\n\r\n------------------------\r\
\n\r\n### System information\r\nMacOS-M1Max : 13.3\r\nTensorflow:2.9.2\r\nPython:\
\ 3.10.0\r\n\r\n\r\n\r\n### Describe the problem\r\nDescribe the problem clearly\
\ here. Be sure to convey here why it's a bug in TensorFlow or a feature request.\r\
\n\r\n### Source code / logs\r\nInclude any logs or source code that would be\
\ helpful to diagnose the problem. If including tracebacks, please include the\
\ full traceback. Large logs and files should be attached. Try to provide a reproducible\
\ test case that is the bare minimum necessary to generate the problem.\r\n"
inference: true
---
# SetFit with sentence-transformers/all-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 384 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| question | <ul><li>"Parse output of `mobile_ssd_v2_float_coco.tflite` ### Issue type\n\nSupport\n\n### Have you reproduced the bug with TensorFlow Nightly?\n\nNo\n\n### Source\n\nsource\n\n### TensorFlow version\n\nv2.11.1\n\n### Custom code\n\nYes\n\n### OS platform and distribution\n\nLinux Ubuntu 20.04\n\n### Mobile device\n\nAndroid\n\n### Python version\n\n_No response_\n\n### Bazel version\n\n6.2.0\n\n### GCC/compiler version\n\n12\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and memory\n\n_No response_\n\n### Current behavior?\n\nI'm trying to use the model [mobile_ssd_v2_float_coco.tflite](https://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/mobile_ssd_v2_float_coco.tflite) on a C++ application, I'm able to execute the inference and get the results.\r\n\r\nBased on the Netron app I see that its output is:\r\n\r\n\r\nBut I couldn't find an example code showing how to parse this output.\r\n\r\nI tried to look into https://github.com/tensorflow/tensorflow/issues/29054 and https://github.com/tensorflow/tensorflow/issues/40298 but the output of the model is different from the one provided [here](https://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/mobile_ssd_v2_float_coco.tflite).\r\n\r\nDo you have any example code available in Java, Python, or even better in C++ to parse this model output?\n\n### Standalone code to reproduce the issue\n\n```shell\nNo example code is available to parse the output of mobile_ssd_v2_float_coco.tflite.\n```\n\n\n### Relevant log output\n\n_No response_"</li><li>'Tensorflow Lite library is crashing in WASM library at 3rd inference <details><summary>Click to expand!</summary> \r\n \r\n ### Issue Type\r\n\r\nSupport\r\n\r\n### Have you reproduced the bug with TF nightly?\r\n\r\nYes\r\n\r\n### Source\r\n\r\nsource\r\n\r\n### Tensorflow Version\r\n\r\n2.7.0\r\n\r\n### Custom Code\r\n\r\nYes\r\n\r\n### OS Platform and Distribution\r\n\r\nEmscripten, Ubuntu 18.04\r\n\r\n### Mobile device\r\n\r\n_No response_\r\n\r\n### Python version\r\n\r\n_No response_\r\n\r\n### Bazel version\r\n\r\n_No response_\r\n\r\n### GCC/Compiler version\r\n\r\n_No response_\r\n\r\n### CUDA/cuDNN version\r\n\r\n_No response_\r\n\r\n### GPU model and memory\r\n\r\n_No response_\r\n\r\n### Current Behaviour?\r\n\r\n```shell\r\nHello! I have C++ code that I want to deploy as WASM library and this code contains TFLite library. I have compiled TFLite library with XNNPack support using Emscripten toolchain quite easy, so no issue there. I have a leight-weight convolution+dense model that runs perfectly on Desktop, but I am starting having problems in the browser.\r\n\r\nIn 99% of cases I have an error on the third inference:\r\n\r\nUncaught RuntimeError: memory access out of bounds\r\n\r\nThrough some trivial debugging I have found out that the issue comes from _interpreter->Invoke() method. Does not matter if I put any input or not, I just need to call Invoke() three times and I have a crash.\r\n\r\nFirst thing first: I decided to add more memory to my WASM library by adding this line to CMake:\r\n\r\nSET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -s TOTAL_STACK=134217728 -s TOTAL_MEMORY=268435456")\r\nSET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -s TOTAL_STACK=134217728 -s TOTAL_MEMORY=268435456")\r\n\r\n128 MB and 256 MB in total for 1 MB model - I think this is more than enough. And on top of that, I am allowing Memory Growth. But unfortunately, I have exactly the same issue.\r\n\r\nI am beating on this problem for 2 weeks straight and at this stage I have no clue how to fix it. Also I have tried to set custom allocation using TfLiteCustomAllocation but in this case I have a crash on the very first inference. I guess I was not using it right, but unfortunately I couldn\'t find even one tutorial describing how to apply custom allocation in TFLite.\r\n\r\nI said that I have a crash in 99% of cases. There was one time when WASM library worked and inference worked as well. It happens just randomly once, and I couldn\'t reproduce it anymore.\r\n```\r\n\r\n\r\n### Standalone code to reproduce the issue\r\n\r\n```shell\r\nHere is the code that does TFLite inference\r\n\r\n\r\n#include <cstdlib>\r\n#include "tflite_model.h"\r\n#include <iostream>\r\n\r\n#include "tensorflow/lite/interpreter.h"\r\n#include "tensorflow/lite/util.h"\r\n\r\nnamespace tracker {\r\n\r\n#ifdef EMSCRIPTEN\r\n\tvoid TFLiteModel::init(std::stringstream& stream) {\r\n\r\n\t\tstd::string img_str = stream.str();\r\n\t\tstd::vector<char> img_model_data(img_str.size());\r\n\t\tstd::copy(img_str.begin(), img_str.end(), img_model_data.begin());\r\n\r\n\t\t_model = tflite::FlatBufferModel::BuildFromBuffer(img_str.data(), img_str.size());\r\n#else\r\n\tvoid TFLiteModel::init(const std::string& path) {\r\n\t\t_model = tflite::FlatBufferModel::BuildFromFile(path.c_str());\r\n\r\n#endif\r\n\r\n\t\ttflite::ops::builtin::BuiltinOpResolver resolver;\r\n\t\ttflite::InterpreterBuilder(*_model, resolver)(&_interpreter);\r\n\r\n\t\t_interpreter->AllocateTensors();\r\n\r\n\t\t/*for (int i = 0; i < _interpreter->tensors_size(); i++) {\r\n\t\t\tTfLiteTensor* tensor = _interpreter->tensor(i);\r\n\r\n\t\t\tif (tensor->allocation_type == kTfLiteArenaRw || tensor->allocation_type == kTfLiteArenaRwPersistent) {\r\n\r\n\t\t\t\tint aligned_bytes = tensor->bytes + (tflite::kDefaultTensorAlignment - tensor->bytes % tflite::kDefaultTensorAlignment) % tflite::kDefaultTensorAlignment;\r\n\r\n\t\t\t\tTfLiteCustomAllocation customAlloc;\r\n\t\t\t\tint result = posix_memalign(&customAlloc.data, tflite::kDefaultTensorAlignment, tensor->bytes);\r\n\t\t\t\tif (result != 0 || customAlloc.data == NULL) {\r\n\t\t\t\t\tstd::cout << "posix_memalign does not work!\\\\n";\r\n\t\t\t\t}\r\n\r\n\t\t\t\tTfLiteStatus st = _interpreter->SetCustomAllocationForTensor(i, customAlloc);\r\n\t\t\t\tstd::cout << "status = " << st << std::endl;\r\n\t\t\t\tif (tensor->bytes % tflite::kDefaultTensorAlignment != 0) {\r\n\t\t\t\t\tstd::cout << "bad! i " << i << ", size " << tensor->bytes << std::endl;\r\n\t\t\t\t}\r\n\t\t\t\t_allocations.push_back(customAlloc);\r\n\t\t\t}\r\n\t\t}\r\n\t\texit(0);*/\r\n\t}\r\n\r\n\tvoid TFLiteModel::forward(const cv::Mat& img_input, const std::vector<float>& lms_input) {\r\n\r\n\t\tfloat* model_in = _interpreter->typed_input_tensor<float>(0);\r\n\t\tstd::memcpy(model_in, img_input.data, img_input.total() * img_input.elemSize());\r\n\r\n\t\tfloat* lms_in = _interpreter->typed_input_tensor<float>(1);\r\n\t\tstd::memcpy(lms_in, lms_input.data(), sizeof(float) * lms_input.size());\r\n\t\t\r\n\t\t_interpreter->Invoke();\r\n\t}\r\n\r\n\tfloat* TFLiteModel::out() {\r\n\t\treturn _interpreter->typed_output_tensor<float>(0);\r\n\t}\r\n\r\n\tstd::vector<int> TFLiteModel::getOutputShape() const {\r\n\t\tTfLiteTensor* outtensor = _interpreter->output_tensor(0);\r\n\t\tTfLiteIntArray* dims = outtensor->dims;\r\n\r\n\t\tstd::vector<int> sh;\r\n\t\tfor (int i = 0; i < dims->size; i++) {\r\n\t\t\tsh.push_back(dims->data[i]);\r\n\t\t}\r\n\r\n\t\treturn sh;\r\n\t}\r\n}\r\n```\r\n\r\n\r\n### Relevant log output\r\n\r\n_No response_</details>'</li><li>'error: \'tf.Conv2D\' op is neither a custom op nor a flex op ### 1. System information\r\n\r\n- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Linux Ubuntu 20.04\r\n- TensorFlow installation (pip package or built from source): pip package\r\n- TensorFlow library (version, if pip package or github SHA, if built from source): v2.10\r\n\r\n### 2. Code\r\nCode for conversion\r\n```\r\nconverter = tf.lite.TFLiteConverter.from_saved_model(f\'savedmodel/decoder\')\r\ntflite_model = converter.convert()\r\n\r\n# save the model\r\nwith open(f\'{name}.tflite\', \'wb\') as f:\r\n f.write(tflite_model)\r\n```\r\nCode for the model\r\n```\r\nlatent = keras.layers.Input((n_h, n_w, 4))\r\ndecoder = Decoder()\r\ndecoder = keras.models.Model(latent, decoder(latent))\r\n```\r\n```\r\nclass Decoder(keras.Sequential):\r\n def __init__(self):\r\n super().__init__(\r\n [\r\n keras.layers.Lambda(lambda x: 1 / 0.18215 * x),\r\n PaddedConv2D(4, 1),\r\n PaddedConv2D(512, 3, padding=1),\r\n ResnetBlock(512, 512),\r\n AttentionBlock(512),\r\n ResnetBlock(512, 512),\r\n ResnetBlock(512, 512),\r\n ResnetBlock(512, 512),\r\n ResnetBlock(512, 512),\r\n keras.layers.UpSampling2D(size=(2, 2)),\r\n PaddedConv2D(512, 3, padding=1),\r\n ResnetBlock(512, 512),\r\n ResnetBlock(512, 512),\r\n ResnetBlock(512, 512),\r\n keras.layers.UpSampling2D(size=(2, 2)),\r\n PaddedConv2D(512, 3, padding=1),\r\n ResnetBlock(512, 256),\r\n ResnetBlock(256, 256),\r\n ResnetBlock(256, 256),\r\n keras.layers.UpSampling2D(size=(2, 2)),\r\n PaddedConv2D(256, 3, padding=1),\r\n ResnetBlock(256, 128),\r\n ResnetBlock(128, 128),\r\n ResnetBlock(128, 128),\r\n tfa.layers.GroupNormalization(epsilon=1e-5),\r\n keras.layers.Activation("swish"),\r\n PaddedConv2D(3, 3, padding=1),\r\n ]\r\n )\r\n```\r\n\r\n### 3. Failure after conversion\r\nconversion fails\r\n\r\n\r\n### 5. (optional) Any other info / logs\r\n[error.log](https://github.com/tensorflow/tensorflow/files/10302790/error.log)\r\n```\r\nSome ops are not supported by the native TFLite runtime, you can enable TF kernels fallback using TF Select. See instructions: https://www.tensorflow.org/lite/guide/ops_select \r\nTF Select ops: Conv2D\r\nDetails:\r\n\ttf.Conv2D(tensor<?x?x?x?xf32>, tensor<1x1x512x512xf32>) -> (tensor<?x?x?x512xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}\r\n\ttf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x128x128xf32>) -> (tensor<?x?x?x128xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}\r\n\ttf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x128x3xf32>) -> (tensor<?x?x?x3xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}\r\n\ttf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x256x128xf32>) -> (tensor<?x?x?x128xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}\r\n\ttf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x256x256xf32>) -> (tensor<?x?x?x256xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}\r\n\ttf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x512x256xf32>) -> (tensor<?x?x?x256xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}\r\n\ttf.Conv2D(tensor<?x?x?x?xf32>, tensor<3x3x512x512xf32>) -> (tensor<?x?x?x512xf32>) : {data_format = "NHWC", device = "", dilations = [1, 1, 1, 1], explicit_paddings = [], padding = "VALID", strides = [1, 1, 1, 1], use_cudnn_on_gpu = true}\r\n```\r\nAccording to the error message, I suspect that it can not recognize the input shape. But as you can see on the above code, input is specified for the functional API for `decoder` model. \r\n(FYI, The inference code is called with `predict_on_batch` method. I found out other model with `predict_on_batch` is converted successfully, but that model doesn\'t contain `conv2d` block inside. Can using `predict_on_batch` together with `conv2d` be a problem?)\r\n\r\n**I\'m sure `conv2d` is on the allowlist for TFLite operators. Any suggestions for this problem? Thank you.**'</li></ul> |
| feature | <ul><li>'tf.keras.optimizers.experimental.AdamW only support constant weight_decay <details><summary>Click to expand!</summary> \n \n ### Issue Type\n\nFeature Request\n\n### Source\n\nsource\n\n### Tensorflow Version\n\n2.8\n\n### Custom Code\n\nNo\n\n### OS Platform and Distribution\n\n_No response_\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n_No response_\n\n### Bazel version\n\n_No response_\n\n### GCC/Compiler version\n\n_No response_\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and memory\n\n_No response_\n\n### Current Behaviour?\n\n```shell\ntf.keras.optimizers.experimental.AdamW only supports constant weight decay. But usually we want the weight_decay value to decay with learning rate schedule.\n```\n\n\n### Standalone code to reproduce the issue\n\n```shell\nThe legacy tfa.optimizers.AdamW supports callable weight_decay, which is much better.\n```\n\n\n### Relevant log output\n\n_No response_</details>'</li><li>'RFE tensorflow-aarch64==2.6.0 build ? **System information**\r\n TensorFlow version (you are using): 2.6.0\r\n- Are you willing to contribute it (Yes/No): Yes\r\n\r\n**Describe the feature and the current behavior/state.**\r\n\r\nBrainchip Akida AKD1000 SNN neuromorphic MetaTF SDK support 2.6.0 on x86_64. They claim support for aarch64, but when creating a virtualenv it fails on aarch64 due to lacking tensorflow-aarc64==2.6.0 build.\r\n\r\n**Will this change the current api? How?**\r\n\r\nNA\r\n\r\n**Who will benefit with this feature?**\r\n\r\nCustomer of Brainchip Akida who run on Arm64 platforms.\r\n\r\n**Any Other info.**\r\n\r\nhttps://doc.brainchipinc.com/installation.html\r\n\r\n\r\n'</li><li>"How to calculate 45 degree standing position of body from camera in swift (Pose estimation) <details><summary>Click to expand!</summary> \n \n ### Issue Type\n\nFeature Request\n\n### Source\n\nsource\n\n### Tensorflow Version\n\npod 'TensorFlowLiteSwift', '~> 0.0.1-nightly', :subspecs => ['CoreML', 'Metal']\n\n### Custom Code\n\nYes\n\n### OS Platform and Distribution\n\n_No response_\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n_No response_\n\n### Bazel version\n\n_No response_\n\n### GCC/Compiler version\n\n_No response_\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and memory\n\n_No response_\n\n### Current Behaviour?\n\n```shell\nHow to calculate 45 degree standing position of body from camera in swift.\n```\n\n\n### Standalone code to reproduce the issue\n\n```shell\nHow to calculate 45 degree standing position of body from camera in swift using the body keypoints. (Pose estimation)\n```\n\n\n### Relevant log output\n\n_No response_</details>"</li></ul> |
| bug | <ul><li>'Abort when running tensorflow.python.ops.gen_array_ops.depth_to_space ### Issue type\n\nBug\n\n### Have you reproduced the bug with TensorFlow Nightly?\n\nNo\n\n### Source\n\nbinary\n\n### TensorFlow version\n\n2.11.0\n\n### Custom code\n\nYes\n\n### OS platform and distribution\n\n22.04\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n3.9\n\n### Bazel version\n\n_No response_\n\n### GCC/compiler version\n\n_No response_\n\n### CUDA/cuDNN version\n\nnvidia-cudnn-cu11==8.6.0.163, cudatoolkit=11.8.0\n\n### GPU model and memory\n\n_No response_\n\n### Current behavior?\n\nDue to very large integer argument\n\n### Standalone code to reproduce the issue\n\n```shell\nimport tensorflow as tf\r\nimport os\r\nimport numpy as np\r\nfrom tensorflow.python.ops import gen_array_ops\r\ntry:\r\n arg_0_tensor = tf.random.uniform([3, 2, 3, 4], dtype=tf.float32)\r\n arg_0 = tf.identity(arg_0_tensor)\r\n arg_1 = 2147483647\r\n arg_2 = "NHWC"\r\n out = gen_array_ops.depth_to_space(arg_0,arg_1,arg_2,)\r\nexcept Exception as e:\r\n print("Error:"+str(e))\r\n\r\n```\n```\n\n\n### Relevant log output\n\n```shell\n023-08-13 00:23:53.644564: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\r\n2023-08-13 00:23:54.491071: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.510564: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.510736: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.511051: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\r\nTo enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-08-13 00:23:54.511595: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.511717: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.511830: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.572398: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.572634: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.572791: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.572916: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 153 MB memory: -> device: 0, name: NVIDIA GeForce GTX 1660 Ti, pci bus id: 0000:01:00.0, compute capability: 7.5\r\n2023-08-13 00:23:54.594062: I tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:735] failed to allocate 153.88M (161349632 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory\r\n2023-08-13 00:23:54.594484: I tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:735] failed to allocate 138.49M (145214720 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory\r\n2023-08-13 00:23:54.600623: F tensorflow/core/framework/tensor_shape.cc:201] Non-OK-status: InitDims(dim_sizes) status: INVALID_ARGUMENT: Expected a non-negative size, got -2\r\nAborted\r\n\r\n```\n```\n'</li><li>"float8 (both e4m3fn and e5m2) missing from numbertype ### Issue Type\r\n\r\nBug\r\n\r\n### Have you reproduced the bug with TF nightly?\r\n\r\nNo\r\n\r\n### Source\r\n\r\nbinary\r\n\r\n### Tensorflow Version\r\n\r\n2.12.0\r\n\r\n### Custom Code\r\n\r\nYes\r\n\r\n### OS Platform and Distribution\r\n\r\nmacOS-13.2.1-arm64-arm-64bit\r\n\r\n### Mobile device\r\n\r\n_No response_\r\n\r\n### Python version\r\n\r\n3.9.6\r\n\r\n### Bazel version\r\n\r\n_No response_\r\n\r\n### GCC/Compiler version\r\n\r\n_No response_\r\n\r\n### CUDA/cuDNN version\r\n\r\n_No response_\r\n\r\n### GPU model and memory\r\n\r\n_No response_\r\n\r\n### Current Behaviour?\r\n\r\nFP8 datatypes are missing from `kNumberTypes` in `tensorflow/core/framework/types.h`, and also missing from `TF_CALL_FLOAT_TYPES(m)` in `tensorflow/core/framework/register_types.h`. This causes simple ops (like slice, transpose, split, etc.) to raise NotFoundError.\r\n\r\n### Standalone code to reproduce the issue\r\n\r\n```python\r\nimport tensorflow as tf\r\nfrom tensorflow.python.framework import dtypes\r\n\r\na = tf.constant([[1.2345678, 2.3456789, 3.4567891], [4.5678912, 5.6789123, 6.7891234]], dtype=dtypes.float16)\r\nprint(a)\r\n\r\na_fp8 = tf.cast(a, dtypes.float8_e4m3fn)\r\nprint(a_fp8)\r\n\r\nb = a_fp8[1:2] # tensorflow.python.framework.errors_impl.NotFoundError\r\nb = tf.transpose(a_fp8, [1, 0]) # tensorflow.python.framework.errors_impl.NotFoundError\r\n```\r\n\r\n\r\n### Relevant log output\r\n\r\n```\r\ntensorflow.python.framework.errors_impl.NotFoundError: Could not find device for node: {{node StridedSlice}} = StridedSlice[Index=DT_INT32, T=DT_FLOAT8_E4M3FN, begin_mask=0, ellipsis_mask=0, end_mask=0, new_axis_mask=0, shrink_axis_mask=0]\r\nAll kernels registered for op StridedSlice:\r\n device='XLA_CPU_JIT'; Index in [DT_INT32, DT_INT16, DT_INT64]; T in [DT_FLOAT, DT_DOUBLE, DT_INT32, DT_UINT8, DT_INT16, 930109355527764061, DT_HALF, DT_UINT32, DT_UINT64, DT_FLOAT8_E5M2, DT_FLOAT8_E4M3FN]\r\n device='CPU'; T in [DT_UINT64]\r\n device='CPU'; T in [DT_INT64]\r\n device='CPU'; T in [DT_UINT32]\r\n device='CPU'; T in [DT_UINT16]\r\n device='CPU'; T in [DT_INT16]\r\n device='CPU'; T in [DT_UINT8]\r\n device='CPU'; T in [DT_INT8]\r\n device='CPU'; T in [DT_INT32]\r\n device='CPU'; T in [DT_HALF]\r\n device='CPU'; T in [DT_BFLOAT16]\r\n device='CPU'; T in [DT_FLOAT]\r\n device='CPU'; T in [DT_DOUBLE]\r\n device='CPU'; T in [DT_COMPLEX64]\r\n device='CPU'; T in [DT_COMPLEX128]\r\n device='CPU'; T in [DT_BOOL]\r\n device='CPU'; T in [DT_STRING]\r\n device='CPU'; T in [DT_RESOURCE]\r\n device='CPU'; T in [DT_VARIANT]\r\n device='CPU'; T in [DT_QINT8]\r\n device='CPU'; T in [DT_QUINT8]\r\n device='CPU'; T in [DT_QINT32]\r\n device='DEFAULT'; T in [DT_INT32]\r\n [Op:StridedSlice] name: strided_slice/\r\n```\r\n\r\n```\r\ntensorflow.python.framework.errors_impl.NotFoundError: Could not find device for node: {{node Transpose}} = Transpose[T=DT_FLOAT8_E4M3FN, Tperm=DT_INT32]\r\nAll kernels registered for op Transpose:\r\n device='XLA_CPU_JIT'; Tperm in [DT_INT32, DT_INT64]; T in [DT_FLOAT, DT_DOUBLE, DT_INT32, DT_UINT8, DT_INT16, 930109355527764061, DT_HALF, DT_UINT32, DT_UINT64, DT_FLOAT8_E5M2, DT_FLOAT8_E4M3FN]\r\n device='CPU'; T in [DT_UINT64]\r\n device='CPU'; T in [DT_INT64]\r\n device='CPU'; T in [DT_UINT32]\r\n device='CPU'; T in [DT_UINT16]\r\n device='CPU'; T in [DT_INT16]\r\n device='CPU'; T in [DT_UINT8]\r\n device='CPU'; T in [DT_INT8]\r\n device='CPU'; T in [DT_INT32]\r\n device='CPU'; T in [DT_HALF]\r\n device='CPU'; T in [DT_BFLOAT16]\r\n device='CPU'; T in [DT_FLOAT]\r\n device='CPU'; T in [DT_DOUBLE]\r\n device='CPU'; T in [DT_COMPLEX64]\r\n device='CPU'; T in [DT_COMPLEX128]\r\n device='CPU'; T in [DT_BOOL]\r\n device='CPU'; T in [DT_STRING]\r\n device='CPU'; T in [DT_RESOURCE]\r\n device='CPU'; T in [DT_VARIANT]\r\n [Op:Transpose]\r\n```"</li><li>"My customized OP gives incorrect outputs on GPUs since `tf-nightly 2.13.0.dev20230413` ### Issue type\n\nBug\n\n### Have you reproduced the bug with TensorFlow Nightly?\n\nYes\n\n### Source\n\nbinary\n\n### TensorFlow version\n\n2.13\n\n### Custom code\n\nYes\n\n### OS platform and distribution\n\nfedora 36\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n3.11.4\n\n### Bazel version\n\n_No response_\n\n### GCC/compiler version\n\n_No response_\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and memory\n\n_No response_\n\n### Current behavior?\n\nI have a complex program based on TensorFlow with several customized OPs. These OPs were created following https://www.tensorflow.org/guide/create_op. Yesterday TF 2.13.0 was released, but after I upgraded to 2.13.0, I found that one of my customized OP gives incorrect results on GPUs and still has the correct outputs on CPUs.\r\n\r\nThen I tested many `tf-nightly` versions and found that `tf-nightly 2.13.0.dev20230412` works but `tf-nightly 2.13.0.dev20230413` fails. So the situation is shown in the following table:\r\n| version | CPU | GPU |\r\n| -------- | --------- | ----------- |\r\n| tensorflow 2.12.0 | Correct | Correct |\r\n| tensorflow 2.13.0 | Correct | Incorrect |\r\n| tf-nightly 2.13.0.dev20230412 | Correct | Correct |\r\n| tf-nightly 2.13.0.dev20230413 | Correct | Incorrect |\r\n\r\nI'd like to know what changed between April 12th and 13th related to the customized OPs. This can be a breaking change to downstream applications or an internal bug. Thanks!\r\n\r\nHere is a quick link for commits between April 12th and 13th:\r\nhttps://github.com/tensorflow/tensorflow/commits/master?before=525da8a93eca846e32e5c41eddc0496b25a2ef5b+770\r\n\n\n### Standalone code to reproduce the issue\n\n```shell\nIndeed, the reason is still unclear to me, so it is hard to create a minimal example.\r\n\r\nThe code of our customized OPs is https://github.com/deepmodeling/deepmd-kit/blob/37fd8d193362f91c925cf7c2f3a58b97dc921b27/source/op/prod_force_multi_device.cc#L49-L166\n```\n\n\n### Relevant log output\n\n_No response_"</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Data init API for TFLite Swift <details><summary>Click to expand!</summary>
### Issue Type
Feature Request
### Source
source
### Tensorflow Version
2.8+
### Custom Code
No
### OS Platform and Distribution
_No response_
### Mobile device
_No response_
### Python version
_No response_
### Bazel version
_No response_
### GCC/Compiler version
_No response_
### CUDA/cuDNN version
_No response_
### GPU model and memory
_No response_
### Current Behaviour?
```shell
The current Swift API only has `init` functions from files on disk unlike the Java (Android) API which has a byte buffer initializer. It'd be convenient if the Swift API could initialize `Interpreters` from `Data`.
```
### Standalone code to reproduce the issue
```shell
No code. This is a feature request
```
### Relevant log output
_No response_</details>")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:---------|:-----|
| Word count | 5 | 353.7433 | 6124 |
| Label | Training Sample Count |
|:---------|:----------------------|
| bug | 200 |
| feature | 200 |
| question | 200 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0007 | 1 | 0.1719 | - |
| 0.0067 | 10 | 0.2869 | - |
| 0.0133 | 20 | 0.2513 | - |
| 0.02 | 30 | 0.1871 | - |
| 0.0267 | 40 | 0.2065 | - |
| 0.0333 | 50 | 0.2302 | - |
| 0.04 | 60 | 0.1645 | - |
| 0.0467 | 70 | 0.1887 | - |
| 0.0533 | 80 | 0.1376 | - |
| 0.06 | 90 | 0.1171 | - |
| 0.0667 | 100 | 0.1303 | - |
| 0.0733 | 110 | 0.121 | - |
| 0.08 | 120 | 0.1126 | - |
| 0.0867 | 130 | 0.1247 | - |
| 0.0933 | 140 | 0.1764 | - |
| 0.1 | 150 | 0.0401 | - |
| 0.1067 | 160 | 0.1571 | - |
| 0.1133 | 170 | 0.0186 | - |
| 0.12 | 180 | 0.0501 | - |
| 0.1267 | 190 | 0.1003 | - |
| 0.1333 | 200 | 0.0152 | - |
| 0.14 | 210 | 0.0784 | - |
| 0.1467 | 220 | 0.1423 | - |
| 0.1533 | 230 | 0.1313 | - |
| 0.16 | 240 | 0.0799 | - |
| 0.1667 | 250 | 0.0542 | - |
| 0.1733 | 260 | 0.0426 | - |
| 0.18 | 270 | 0.047 | - |
| 0.1867 | 280 | 0.0062 | - |
| 0.1933 | 290 | 0.0085 | - |
| 0.2 | 300 | 0.0625 | - |
| 0.2067 | 310 | 0.095 | - |
| 0.2133 | 320 | 0.0262 | - |
| 0.22 | 330 | 0.0029 | - |
| 0.2267 | 340 | 0.0097 | - |
| 0.2333 | 350 | 0.063 | - |
| 0.24 | 360 | 0.0059 | - |
| 0.2467 | 370 | 0.0016 | - |
| 0.2533 | 380 | 0.0025 | - |
| 0.26 | 390 | 0.0033 | - |
| 0.2667 | 400 | 0.0006 | - |
| 0.2733 | 410 | 0.0032 | - |
| 0.28 | 420 | 0.0045 | - |
| 0.2867 | 430 | 0.0013 | - |
| 0.2933 | 440 | 0.0011 | - |
| 0.3 | 450 | 0.001 | - |
| 0.3067 | 460 | 0.0044 | - |
| 0.3133 | 470 | 0.001 | - |
| 0.32 | 480 | 0.0009 | - |
| 0.3267 | 490 | 0.0004 | - |
| 0.3333 | 500 | 0.0006 | - |
| 0.34 | 510 | 0.001 | - |
| 0.3467 | 520 | 0.0003 | - |
| 0.3533 | 530 | 0.0008 | - |
| 0.36 | 540 | 0.0003 | - |
| 0.3667 | 550 | 0.0023 | - |
| 0.3733 | 560 | 0.0336 | - |
| 0.38 | 570 | 0.0004 | - |
| 0.3867 | 580 | 0.0003 | - |
| 0.3933 | 590 | 0.0006 | - |
| 0.4 | 600 | 0.0008 | - |
| 0.4067 | 610 | 0.0011 | - |
| 0.4133 | 620 | 0.0002 | - |
| 0.42 | 630 | 0.0004 | - |
| 0.4267 | 640 | 0.0005 | - |
| 0.4333 | 650 | 0.0601 | - |
| 0.44 | 660 | 0.0003 | - |
| 0.4467 | 670 | 0.0003 | - |
| 0.4533 | 680 | 0.0006 | - |
| 0.46 | 690 | 0.0005 | - |
| 0.4667 | 700 | 0.0003 | - |
| 0.4733 | 710 | 0.0006 | - |
| 0.48 | 720 | 0.0001 | - |
| 0.4867 | 730 | 0.0002 | - |
| 0.4933 | 740 | 0.0002 | - |
| 0.5 | 750 | 0.0002 | - |
| 0.5067 | 760 | 0.0002 | - |
| 0.5133 | 770 | 0.0016 | - |
| 0.52 | 780 | 0.0001 | - |
| 0.5267 | 790 | 0.0005 | - |
| 0.5333 | 800 | 0.0004 | - |
| 0.54 | 810 | 0.0039 | - |
| 0.5467 | 820 | 0.0031 | - |
| 0.5533 | 830 | 0.0008 | - |
| 0.56 | 840 | 0.0003 | - |
| 0.5667 | 850 | 0.0002 | - |
| 0.5733 | 860 | 0.0002 | - |
| 0.58 | 870 | 0.0002 | - |
| 0.5867 | 880 | 0.0001 | - |
| 0.5933 | 890 | 0.0004 | - |
| 0.6 | 900 | 0.0002 | - |
| 0.6067 | 910 | 0.0008 | - |
| 0.6133 | 920 | 0.0005 | - |
| 0.62 | 930 | 0.0005 | - |
| 0.6267 | 940 | 0.0002 | - |
| 0.6333 | 950 | 0.0001 | - |
| 0.64 | 960 | 0.0002 | - |
| 0.6467 | 970 | 0.0007 | - |
| 0.6533 | 980 | 0.0002 | - |
| 0.66 | 990 | 0.0002 | - |
| 0.6667 | 1000 | 0.0002 | - |
| 0.6733 | 1010 | 0.0002 | - |
| 0.68 | 1020 | 0.0002 | - |
| 0.6867 | 1030 | 0.0002 | - |
| 0.6933 | 1040 | 0.0004 | - |
| 0.7 | 1050 | 0.0076 | - |
| 0.7067 | 1060 | 0.0002 | - |
| 0.7133 | 1070 | 0.0002 | - |
| 0.72 | 1080 | 0.0001 | - |
| 0.7267 | 1090 | 0.0002 | - |
| 0.7333 | 1100 | 0.0001 | - |
| 0.74 | 1110 | 0.0365 | - |
| 0.7467 | 1120 | 0.0002 | - |
| 0.7533 | 1130 | 0.0002 | - |
| 0.76 | 1140 | 0.0003 | - |
| 0.7667 | 1150 | 0.0002 | - |
| 0.7733 | 1160 | 0.0002 | - |
| 0.78 | 1170 | 0.0004 | - |
| 0.7867 | 1180 | 0.0001 | - |
| 0.7933 | 1190 | 0.0001 | - |
| 0.8 | 1200 | 0.0001 | - |
| 0.8067 | 1210 | 0.0001 | - |
| 0.8133 | 1220 | 0.0002 | - |
| 0.82 | 1230 | 0.0002 | - |
| 0.8267 | 1240 | 0.0001 | - |
| 0.8333 | 1250 | 0.0001 | - |
| 0.84 | 1260 | 0.0002 | - |
| 0.8467 | 1270 | 0.0002 | - |
| 0.8533 | 1280 | 0.0 | - |
| 0.86 | 1290 | 0.0002 | - |
| 0.8667 | 1300 | 0.032 | - |
| 0.8733 | 1310 | 0.0001 | - |
| 0.88 | 1320 | 0.0001 | - |
| 0.8867 | 1330 | 0.0001 | - |
| 0.8933 | 1340 | 0.0003 | - |
| 0.9 | 1350 | 0.0001 | - |
| 0.9067 | 1360 | 0.0001 | - |
| 0.9133 | 1370 | 0.0001 | - |
| 0.92 | 1380 | 0.0001 | - |
| 0.9267 | 1390 | 0.0001 | - |
| 0.9333 | 1400 | 0.0001 | - |
| 0.94 | 1410 | 0.0001 | - |
| 0.9467 | 1420 | 0.0001 | - |
| 0.9533 | 1430 | 0.031 | - |
| 0.96 | 1440 | 0.0001 | - |
| 0.9667 | 1450 | 0.0003 | - |
| 0.9733 | 1460 | 0.0001 | - |
| 0.98 | 1470 | 0.0001 | - |
| 0.9867 | 1480 | 0.0001 | - |
| 0.9933 | 1490 | 0.0001 | - |
| 1.0 | 1500 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |