File size: 1,232 Bytes
21d95a5 fabb9f4 21d95a5 fabb9f4 21d95a5 fabb9f4 21d95a5 380a1ba fabb9f4 21d95a5 fabb9f4 21d95a5 05f15f2 21d95a5 fabb9f4 21d95a5 fabb9f4 21d95a5 fabb9f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
library_name: transformers
license: llama3
base_model:
- meta-llama/Meta-Llama-3-8B
tags:
- LLaMA3
- llama
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Nirajan Dhakal
- **Model type:** Text Generation
- **Language(s) (NLP):** English
- **License:** LLaMA 3 Community License
Running Inference:
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
tokenizer = AutoTokenizer.from_pretrained("nirajandhakal/LLaMA3-Reasoning")
model = AutoModelForCausalLM.from_pretrained("nirajandhakal/LLaMA3-Reasoning")
pipe = pipeline("text-generation", model="nirajandhakal/LLaMA3-Reasoning", truncation=True)
# Define a prompt for the model
prompt = "What are the benefits of using artificial intelligence in healthcare?"
# Generate text based on the prompt
generated_text = pipe(prompt, max_length=200)
# Print the generated text
print(generated_text[0]['generated_text'])
``` |