nirusanan commited on
Commit
315622d
·
verified ·
1 Parent(s): de8529a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ pipeline_tag: text-generation
6
+
7
+ base_model: meta-llama/Meta-Llama-3-8B
8
+ base_model_relation: finetune
9
+ ---
10
+ # Model Information
11
+ The Llama-3-8B_SFT_Finetune_Pandas_Code is a quantized, fine-tuned version of the Meta-Llama-3 model designed specifically for analyzing tabular data.
12
+
13
+
14
+ # How to use
15
+ Starting with transformers version 4.34.0 and later, you can run conversational inference using the Transformers pipeline.
16
+
17
+ Make sure to update your transformers installation via pip install --upgrade transformers.
18
+
19
+ ```python
20
+ import transformers
21
+ import torch
22
+ from peft import PeftModel, PeftConfig, get_peft_model
23
+ from transformers import pipeline
24
+ ```
25
+
26
+ ```python
27
+ def get_pipline():
28
+ model_name = "nirusanan/Llama-3-8B_SFT_Finetune_Pandas_Code"
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
31
+ tokenizer.pad_token = tokenizer.eos_token
32
+
33
+ model = AutoModelForCausalLM.from_pretrained(
34
+ model_name,
35
+ torch_dtype=torch.float16,
36
+ device_map="cuda:0",
37
+ trust_remote_code=True
38
+ )
39
+
40
+ pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=850)
41
+
42
+ return pipe
43
+
44
+ pipe = get_pipline()
45
+ ```
46
+
47
+ ```python
48
+ def generate_prompt(task, header_columns):
49
+ prompt = f"""Below is an instruction that describes a task. Write a Python function using Pandas to accomplish the task described below.
50
+
51
+ ### Instruction:
52
+ {task}
53
+
54
+ header columns with sample data:
55
+ {header_columns}
56
+
57
+ ### Response:
58
+ """
59
+ return prompt
60
+ ```
61
+
62
+ ```python
63
+ prompt = generate_prompt("Your question based on tabular data", "Necessary columns names")
64
+ result = pipe(prompt)
65
+ generated_text = result[0]['generated_text']
66
+ print(generated_text.split("### End")[0])
67
+ ```