Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: transformers
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
|
7 |
+
base_model: meta-llama/Meta-Llama-3-8B
|
8 |
+
base_model_relation: finetune
|
9 |
+
---
|
10 |
+
# Model Information
|
11 |
+
The Llama-3-8B_SFT_Finetune_Pandas_Code is a quantized, fine-tuned version of the Meta-Llama-3 model designed specifically for analyzing tabular data.
|
12 |
+
|
13 |
+
|
14 |
+
# How to use
|
15 |
+
Starting with transformers version 4.34.0 and later, you can run conversational inference using the Transformers pipeline.
|
16 |
+
|
17 |
+
Make sure to update your transformers installation via pip install --upgrade transformers.
|
18 |
+
|
19 |
+
```python
|
20 |
+
import transformers
|
21 |
+
import torch
|
22 |
+
from peft import PeftModel, PeftConfig, get_peft_model
|
23 |
+
from transformers import pipeline
|
24 |
+
```
|
25 |
+
|
26 |
+
```python
|
27 |
+
def get_pipline():
|
28 |
+
model_name = "nirusanan/Llama-3-8B_SFT_Finetune_Pandas_Code"
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
tokenizer.pad_token = tokenizer.eos_token
|
32 |
+
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_name,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
device_map="cuda:0",
|
37 |
+
trust_remote_code=True
|
38 |
+
)
|
39 |
+
|
40 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=850)
|
41 |
+
|
42 |
+
return pipe
|
43 |
+
|
44 |
+
pipe = get_pipline()
|
45 |
+
```
|
46 |
+
|
47 |
+
```python
|
48 |
+
def generate_prompt(task, header_columns):
|
49 |
+
prompt = f"""Below is an instruction that describes a task. Write a Python function using Pandas to accomplish the task described below.
|
50 |
+
|
51 |
+
### Instruction:
|
52 |
+
{task}
|
53 |
+
|
54 |
+
header columns with sample data:
|
55 |
+
{header_columns}
|
56 |
+
|
57 |
+
### Response:
|
58 |
+
"""
|
59 |
+
return prompt
|
60 |
+
```
|
61 |
+
|
62 |
+
```python
|
63 |
+
prompt = generate_prompt("Your question based on tabular data", "Necessary columns names")
|
64 |
+
result = pipe(prompt)
|
65 |
+
generated_text = result[0]['generated_text']
|
66 |
+
print(generated_text.split("### End")[0])
|
67 |
+
```
|