nitesh-sawadia commited on
Commit
247eee4
·
1 Parent(s): 293f30a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - invoice_layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-intellectai
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: invoice_layoutlmv3
20
+ type: invoice_layoutlmv3
21
+ config: intellectai
22
+ split: validation
23
+ args: intellectai
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.7053571428571429
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8540540540540541
31
+ - name: F1
32
+ type: f1
33
+ value: 0.7726161369193154
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9624772313296903
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-intellectai
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice_layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3645
47
+ - Precision: 0.7054
48
+ - Recall: 0.8541
49
+ - F1: 0.7726
50
+ - Accuracy: 0.9625
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 2
71
+ - eval_batch_size: 2
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 500
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 0.79 | 50 | 1.7979 | 0.0228 | 0.0541 | 0.0321 | 0.1410 |
82
+ | No log | 1.59 | 100 | 1.2400 | 0.0863 | 0.4216 | 0.1433 | 0.2616 |
83
+ | No log | 2.38 | 150 | 0.8691 | 0.1279 | 0.6919 | 0.2159 | 0.4495 |
84
+ | No log | 3.17 | 200 | 0.6001 | 0.2323 | 0.8162 | 0.3617 | 0.7570 |
85
+ | No log | 3.97 | 250 | 0.4709 | 0.4660 | 0.7784 | 0.5830 | 0.9093 |
86
+ | No log | 4.76 | 300 | 0.3986 | 0.5977 | 0.8270 | 0.6939 | 0.9472 |
87
+ | No log | 5.56 | 350 | 0.3762 | 0.5714 | 0.8216 | 0.6741 | 0.9454 |
88
+ | No log | 6.35 | 400 | 0.3763 | 0.7048 | 0.8649 | 0.7767 | 0.9636 |
89
+ | No log | 7.14 | 450 | 0.3696 | 0.6639 | 0.8541 | 0.7470 | 0.9570 |
90
+ | 0.71 | 7.94 | 500 | 0.3645 | 0.7054 | 0.8541 | 0.7726 | 0.9625 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.27.1
96
+ - Pytorch 1.13.1+cu116
97
+ - Datasets 2.10.1
98
+ - Tokenizers 0.13.2