nivashuggingface commited on
Commit
4d380ff
Β·
verified Β·
1 Parent(s): fe8ab9e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +63 -37
README.md CHANGED
@@ -1,48 +1,74 @@
1
- ---
2
- language: en
3
- license: mit
4
- tags:
5
- - tensorflow
6
- - image-classification
7
- - mnist
8
- - digits
9
- datasets:
10
- - mnist
11
- metrics:
12
- - accuracy
13
- ---
14
 
15
- # Digit Recognition Model
16
 
17
- This model is trained to recognize handwritten digits from the MNIST dataset.
18
 
19
- ## Model Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- - **Model Type:** CNN with Attention
22
- - **Task:** Image Classification
23
- - **Input:** 28x28 grayscale images
24
- - **Output:** Digit classification (0-9)
25
 
26
- ## Training
 
 
 
27
 
28
- The model was trained on the MNIST dataset using a CNN architecture with attention mechanisms.
29
 
30
- ## Usage
 
 
 
 
31
 
32
- ```python
33
- import tensorflow as tf
34
- import numpy as np
35
 
36
- # Load the model
37
- model = tf.saved_model.load("path_to_saved_model")
 
 
38
 
39
- # Prepare input
40
- image = tf.keras.preprocessing.image.load_img("digit.png", target_size=(28, 28))
41
- image = tf.keras.preprocessing.image.img_to_array(image)
42
- image = image.astype('float32') / 255.0
43
- image = np.expand_dims(image, axis=0)
44
 
45
- # Make prediction
46
- predictions = model(image)
47
- predicted_digit = tf.argmax(predictions, axis=1).numpy()[0]
48
- ```
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AI Model Training Project
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ This project demonstrates a complete machine learning workflow from data preparation to model deployment, using the MNIST dataset with an innovative approach to digit recognition.
4
 
5
+ ## Project Structure
6
 
7
+ ```
8
+ .
9
+ β”œβ”€β”€ data/ # Dataset storage
10
+ β”œβ”€β”€ models/ # Saved model files
11
+ β”œβ”€β”€ src/ # Source code
12
+ β”‚ β”œβ”€β”€ data_preparation.py
13
+ β”‚ β”œβ”€β”€ model.py
14
+ β”‚ β”œβ”€β”€ training.py
15
+ β”‚ β”œβ”€β”€ evaluation.py
16
+ β”‚ └── deployment.py
17
+ β”œβ”€β”€ notebooks/ # Jupyter notebooks for exploration
18
+ β”œβ”€β”€ requirements.txt # Project dependencies
19
+ └── README.md # Project documentation
20
+ ```
21
+
22
+ ## Setup Instructions
23
+
24
+ 1. Create a virtual environment:
25
+ ```bash
26
+ python -m venv venv
27
+ source venv/bin/activate # On Windows: venv\Scripts\activate
28
+ ```
29
 
30
+ 2. Install dependencies:
31
+ ```bash
32
+ pip install -r requirements.txt
33
+ ```
34
 
35
+ 3. Run the training pipeline:
36
+ ```bash
37
+ python src/training.py
38
+ ```
39
 
40
+ ## Project Features
41
 
42
+ - Custom CNN architecture for robust digit recognition
43
+ - Data augmentation techniques
44
+ - Model evaluation and hyperparameter tuning
45
+ - Model deployment pipeline
46
+ - Performance monitoring
47
 
48
+ ## Learning Concepts Covered
 
 
49
 
50
+ 1. Data Preprocessing
51
+ - Data loading and cleaning
52
+ - Feature engineering
53
+ - Data augmentation
54
 
55
+ 2. Model Architecture
56
+ - Custom CNN design
57
+ - Layer configuration
58
+ - Activation functions
 
59
 
60
+ 3. Training Process
61
+ - Loss functions
62
+ - Optimizers
63
+ - Learning rate scheduling
64
+ - Early stopping
65
+
66
+ 4. Evaluation
67
+ - Metrics calculation
68
+ - Cross-validation
69
+ - Model comparison
70
+
71
+ 5. Deployment
72
+ - Model saving
73
+ - Inference pipeline
74
+ - Performance monitoring