nksk commited on
Commit
c6d8ab0
·
verified ·
1 Parent(s): 75440dd

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: I've exhausted all my knowledge on this question
14
+ - text: That's all I can offer for this question at this time
15
+ - text: I believe user engagement and time spent on the platform for Spotify's success
16
+ are crucial. I also believe that it's crucial to focus on providing personalized
17
+ recommendations and a seamless user experience to keep users engaged. Anything
18
+ else that you would like me to consider or key points that I may have missed?
19
+ - text: 'so, here''s the gist of my recommendation: we need to focus on three areas
20
+ - execution, marketing, and sales. with that I have captured my key approach here.
21
+ anything else you want me to address?'
22
+ - text: Let me revisit something you mentioned earlier.
23
+ inference: true
24
+ model-index:
25
+ - name: SetFit with BAAI/bge-small-en-v1.5
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: Unknown
32
+ type: unknown
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.9054054054054054
37
+ name: Accuracy
38
+ ---
39
+
40
+ # SetFit with BAAI/bge-small-en-v1.5
41
+
42
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
43
+
44
+ The model has been trained using an efficient few-shot learning technique that involves:
45
+
46
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
47
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** SetFit
53
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
54
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
55
+ - **Maximum Sequence Length:** 512 tokens
56
+ - **Number of Classes:** 4 classes
57
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
64
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
65
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
66
+
67
+ ### Model Labels
68
+ | Label | Examples |
69
+ |:----------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
70
+ | none | <ul><li>'I’ll need to think it over to elaborate on this question.'</li><li>'I think I will go to Disneyland.'</li><li>'I missed part of that; could you please rephrase it for me?'</li></ul> |
71
+ | wrapup_question | <ul><li>"That's all for now in regards to this question"</li><li>"Do you have any other issues you'd like me to address?"</li><li>'Do you have any other questions related to this topic?'</li></ul> |
72
+ | end_question | <ul><li>"let's do some other more meaningful question"</li><li>"I think I've covered everything I needed to for this question"</li><li>'Ok, I am done answering this question'</li></ul> |
73
+ | next_question | <ul><li>'Can you please provide me a different question?'</li><li>"I've given that question a lot of thought. What's next?"</li><li>"I hope I answered your question to your satisfaction. What's the next one?"</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Accuracy |
79
+ |:--------|:---------|
80
+ | **all** | 0.9054 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("nksk/Intent_bge-small-en-v1.5_v5.0")
99
+ # Run inference
100
+ preds = model("Let me revisit something you mentioned earlier.")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:--------|:-----|
132
+ | Word count | 1 | 38.7075 | 1048 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:----------------|:----------------------|
136
+ | end_question | 56 |
137
+ | next_question | 30 |
138
+ | none | 157 |
139
+ | wrapup_question | 51 |
140
+
141
+ ### Training Hyperparameters
142
+ - batch_size: (32, 16)
143
+ - num_epochs: (3, 10)
144
+ - max_steps: -1
145
+ - sampling_strategy: oversampling
146
+ - body_learning_rate: (2e-05, 1e-05)
147
+ - head_learning_rate: 0.0005
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: True
152
+ - use_amp: True
153
+ - warmup_proportion: 0.1
154
+ - l2_weight: 0.01
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: False
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:------:|:----:|:-------------:|:---------------:|
162
+ | 0.0006 | 1 | 0.2718 | - |
163
+ | 0.0290 | 50 | 0.2554 | - |
164
+ | 0.0580 | 100 | 0.2373 | - |
165
+ | 0.0870 | 150 | 0.2127 | - |
166
+ | 0.1160 | 200 | 0.1728 | - |
167
+ | 0.1450 | 250 | 0.1301 | - |
168
+ | 0.1740 | 300 | 0.0944 | - |
169
+ | 0.2030 | 350 | 0.0591 | - |
170
+ | 0.2320 | 400 | 0.0393 | - |
171
+ | 0.2610 | 450 | 0.0217 | - |
172
+ | 0.2900 | 500 | 0.013 | - |
173
+ | 0.3190 | 550 | 0.0111 | - |
174
+ | 0.3480 | 600 | 0.006 | - |
175
+ | 0.3770 | 650 | 0.0047 | - |
176
+ | 0.4060 | 700 | 0.0035 | - |
177
+ | 0.4350 | 750 | 0.004 | - |
178
+ | 0.4640 | 800 | 0.0022 | - |
179
+ | 0.4930 | 850 | 0.0019 | - |
180
+ | 0.5220 | 900 | 0.0017 | - |
181
+ | 0.5510 | 950 | 0.0014 | - |
182
+ | 0.5800 | 1000 | 0.0013 | - |
183
+ | 0.6090 | 1050 | 0.0013 | - |
184
+ | 0.6381 | 1100 | 0.0012 | - |
185
+ | 0.6671 | 1150 | 0.0011 | - |
186
+ | 0.6961 | 1200 | 0.001 | - |
187
+ | 0.7251 | 1250 | 0.0009 | - |
188
+ | 0.7541 | 1300 | 0.0009 | - |
189
+ | 0.7831 | 1350 | 0.0009 | - |
190
+ | 0.8121 | 1400 | 0.0008 | - |
191
+ | 0.8411 | 1450 | 0.0008 | - |
192
+ | 0.8701 | 1500 | 0.0008 | - |
193
+ | 0.8991 | 1550 | 0.0007 | - |
194
+ | 0.9281 | 1600 | 0.0008 | - |
195
+ | 0.9571 | 1650 | 0.0007 | - |
196
+ | 0.9861 | 1700 | 0.0007 | - |
197
+ | 1.0151 | 1750 | 0.0007 | - |
198
+ | 1.0441 | 1800 | 0.0006 | - |
199
+ | 1.0731 | 1850 | 0.0006 | - |
200
+ | 1.1021 | 1900 | 0.0006 | - |
201
+ | 1.1311 | 1950 | 0.0006 | - |
202
+ | 1.1601 | 2000 | 0.0006 | - |
203
+ | 1.1891 | 2050 | 0.0006 | - |
204
+ | 1.2181 | 2100 | 0.0006 | - |
205
+ | 1.2471 | 2150 | 0.0006 | - |
206
+ | 1.2761 | 2200 | 0.0005 | - |
207
+ | 1.3051 | 2250 | 0.0005 | - |
208
+ | 1.3341 | 2300 | 0.0005 | - |
209
+ | 1.3631 | 2350 | 0.0005 | - |
210
+ | 1.3921 | 2400 | 0.0005 | - |
211
+ | 1.4211 | 2450 | 0.0005 | - |
212
+ | 1.4501 | 2500 | 0.0005 | - |
213
+ | 1.4791 | 2550 | 0.0005 | - |
214
+ | 1.5081 | 2600 | 0.0005 | - |
215
+ | 1.5371 | 2650 | 0.0004 | - |
216
+ | 1.5661 | 2700 | 0.0005 | - |
217
+ | 1.5951 | 2750 | 0.0005 | - |
218
+ | 1.6241 | 2800 | 0.0004 | - |
219
+ | 1.6531 | 2850 | 0.0004 | - |
220
+ | 1.6821 | 2900 | 0.0004 | - |
221
+ | 1.7111 | 2950 | 0.0004 | - |
222
+ | 1.7401 | 3000 | 0.0004 | - |
223
+ | 1.7691 | 3050 | 0.0004 | - |
224
+ | 1.7981 | 3100 | 0.0004 | - |
225
+ | 1.8271 | 3150 | 0.0004 | - |
226
+ | 1.8561 | 3200 | 0.0004 | - |
227
+ | 1.8852 | 3250 | 0.0004 | - |
228
+ | 1.9142 | 3300 | 0.0004 | - |
229
+ | 1.9432 | 3350 | 0.0004 | - |
230
+ | 1.9722 | 3400 | 0.0004 | - |
231
+ | 2.0012 | 3450 | 0.0004 | - |
232
+ | 2.0302 | 3500 | 0.0003 | - |
233
+ | 2.0592 | 3550 | 0.0004 | - |
234
+ | 2.0882 | 3600 | 0.0004 | - |
235
+ | 2.1172 | 3650 | 0.0004 | - |
236
+ | 2.1462 | 3700 | 0.0004 | - |
237
+ | 2.1752 | 3750 | 0.0004 | - |
238
+ | 2.2042 | 3800 | 0.0004 | - |
239
+ | 2.2332 | 3850 | 0.0003 | - |
240
+ | 2.2622 | 3900 | 0.0003 | - |
241
+ | 2.2912 | 3950 | 0.0003 | - |
242
+ | 2.3202 | 4000 | 0.0003 | - |
243
+ | 2.3492 | 4050 | 0.0003 | - |
244
+ | 2.3782 | 4100 | 0.0003 | - |
245
+ | 2.4072 | 4150 | 0.0003 | - |
246
+ | 2.4362 | 4200 | 0.0003 | - |
247
+ | 2.4652 | 4250 | 0.0003 | - |
248
+ | 2.4942 | 4300 | 0.0003 | - |
249
+ | 2.5232 | 4350 | 0.0003 | - |
250
+ | 2.5522 | 4400 | 0.0003 | - |
251
+ | 2.5812 | 4450 | 0.0003 | - |
252
+ | 2.6102 | 4500 | 0.0003 | - |
253
+ | 2.6392 | 4550 | 0.0003 | - |
254
+ | 2.6682 | 4600 | 0.0003 | - |
255
+ | 2.6972 | 4650 | 0.0003 | - |
256
+ | 2.7262 | 4700 | 0.0003 | - |
257
+ | 2.7552 | 4750 | 0.0003 | - |
258
+ | 2.7842 | 4800 | 0.0003 | - |
259
+ | 2.8132 | 4850 | 0.0003 | - |
260
+ | 2.8422 | 4900 | 0.0003 | - |
261
+ | 2.8712 | 4950 | 0.0003 | - |
262
+ | 2.9002 | 5000 | 0.0003 | - |
263
+ | 2.9292 | 5050 | 0.0003 | - |
264
+ | 2.9582 | 5100 | 0.0003 | - |
265
+ | 2.9872 | 5150 | 0.0003 | - |
266
+
267
+ ### Framework Versions
268
+ - Python: 3.10.12
269
+ - SetFit: 1.1.0
270
+ - Sentence Transformers: 3.0.1
271
+ - Transformers: 4.44.2
272
+ - PyTorch: 2.5.0+cu121
273
+ - Datasets: 3.0.2
274
+ - Tokenizers: 0.19.1
275
+
276
+ ## Citation
277
+
278
+ ### BibTeX
279
+ ```bibtex
280
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
281
+ doi = {10.48550/ARXIV.2209.11055},
282
+ url = {https://arxiv.org/abs/2209.11055},
283
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
284
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
285
+ title = {Efficient Few-Shot Learning Without Prompts},
286
+ publisher = {arXiv},
287
+ year = {2022},
288
+ copyright = {Creative Commons Attribution 4.0 International}
289
+ }
290
+ ```
291
+
292
+ <!--
293
+ ## Glossary
294
+
295
+ *Clearly define terms in order to be accessible across audiences.*
296
+ -->
297
+
298
+ <!--
299
+ ## Model Card Authors
300
+
301
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
302
+ -->
303
+
304
+ <!--
305
+ ## Model Card Contact
306
+
307
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
308
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.44.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "end_question",
5
+ "next_question",
6
+ "none",
7
+ "wrapup_question"
8
+ ]
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfe1f5122e70783f46e82bc107c3ddf9e640d8aad4e83e4bde3374a1deb66fdc
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76bef57e80fef36e84b1110b30fdacae880224f16928459818e84b8a8bd424e9
3
+ size 13399
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff