nllg
/

potamides commited on
Commit
03edfb2
·
verified ·
1 Parent(s): 1f01a38

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -192
README.md CHANGED
@@ -3,197 +3,139 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Model Card for DeTi*k*Zify<sub>v2</sub> (8b)
7
+ DeTi*k*Zify<sub>v2</sub> (8b) is a language model that automatically converts
8
+ sketches and existing scientific figures into editable, semantics-preserving
9
+ Ti*k*Z graphics programs. It is based on [LLaMA<sub>3.1</sub>
10
+ (8b)](https://huggingface.co/meta-llama/Llama-3.1-8B) and the SigLIP vision
11
+ encoder of [PaliGemma<sub>Mix-448</sub>
12
+ (3b)](https://huggingface.co/google/paligemma-3b-mix-448). Check out the
13
+ [DeTi*k*Zify](https://github.com/potamides/DeTikZify) project for more
14
+ information and tips on how to best run the model.
15
+
16
+ > [!WARNING]
17
+ > This release is considered a preview and may be updated in the near future.
18
+
19
+ ## Usage
20
+ ```python
21
+ from operator import itemgetter
22
+
23
+ from detikzify.model import load
24
+ from detikzify.infer import DetikzifyPipeline
25
+
26
+ image = "https://w.wiki/A7Cc"
27
+ pipeline = DetikzifyPipeline(*load(
28
+ model_name_or_path="nllg/detikzify-v2-8b",
29
+ device_map="auto",
30
+ torch_dtype="bfloat16",
31
+ ))
32
+
33
+ # generate a single TikZ program
34
+ fig = pipeline.sample(image=image)
35
+
36
+ # if it compiles, rasterize it and show it
37
+ if fig.is_rasterizable:
38
+ fig.rasterize().show()
39
+
40
+ # run MCTS for 10 minutes and generate multiple TikZ programs
41
+ figs = set()
42
+ for score, fig in pipeline.simulate(image=image, timeout=600):
43
+ figs.add((score, fig))
44
+
45
+ # save the best TikZ program
46
+ best = sorted(figs, key=itemgetter(0))[-1][1]
47
+ best.save("fig.tex")
48
+ ```
49
+
50
+ ## Changes from DeTi*k*Zify<sub>v1</sub>
51
+
52
+ ### Architecture
53
+ Similar to DeTi*k*Zify<sub>v1</sub>, DeTi*k*Zify<sub>v2</sub> uses a SigLIP
54
+ vision encoder. However, inspired by the continued ViT pretraining of
55
+ [InternVL](https://arxiv.org/abs/2404.16821), we initialize the weights with
56
+ the fine-tuned vision encoder of [PaliGemma<sub>Mix-448</sub>
57
+ (3b)](https://arxiv.org/abs/2407.07726) and increase DeTi*k*Zify's
58
+ resolution to 420x420 pixels. Further, the vision encoder is no longer kept
59
+ frozen but fully fine-tuned with the rest of the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  ### Training Data
62
+ For pretraining, we switch from MetaFig to the much larger
63
+ [ArXivCap](https://huggingface.co/datasets/MMInstruction/ArxivCap) dataset and
64
+ extract 1 million (figure, caption, OCR) tuples for pretraining the modality
65
+ connector. For fine-tuning, we create a new DaTi*k*Z<sub>v3</sub> dataset (to
66
+ be released soon) with over 450k Ti*k*Z drawings.
67
+
68
+ We also train a new model called
69
+ [UltraSketch](https://huggingface.co/nllg/ultrasketch) to generate synthetic
70
+ sketches during training. It is based on
71
+ [UltraEdit](https://arxiv.org/abs/2407.05282) and achieves a congruence
72
+ coefficient (CC) of 0.74. Additionally, we generate synthetic sketches using
73
+ image transformation. While these sketches are less diverse, they are better at
74
+ preserving text rendering, achieving a similar CC of 0.75. When we average the
75
+ sketch representations produced by both methods, the resulting CC increases to
76
+ 0.82, indicating that the methods are orthogonal and complement each other
77
+ effectively.
78
+
79
+ ### Training & Inference
80
+ We observe improved performance by extending the training to 5 epochs and
81
+ increasing the learning rate to 5e-5. Fully fine-tuning the vision encoder
82
+ means that we can no longer compute SelfSim as the cosine similarity between
83
+ pooled outputs during inference, as the pooling head is not fine-tuned.
84
+ However, by instead computing Earth Mover's Distance on the fine-tuned patch
85
+ embeddings, it actually enhances the correlation with human judgments (0.456
86
+ segment-level and 0.911 system-level correlation). This means that
87
+ DeTikZify<sub>v2</sub> also works well with our MCTS-based inference algorithm.
88
+
89
+ # Evaluation
90
+ Here is how DeTi*k*Zify<sub>v2</sub> (8b) compares to
91
+ [DeTi<i>k</i>Zify<sub>v1</sub>
92
+ (DS-7b)](https://huggingface.co/nllg/detikzify-ds-7b), previously the best
93
+ performing DeTi*k*Zify model, as evaluated on the test split of
94
+ DaTi*k*Z<sub>v3</sub>.
95
+
96
+ <table>
97
+ <tr>
98
+ <th></th>
99
+ <th colspan="5">Reference Figures</th>
100
+ <th colspan="5">Reference Figures</th>
101
+ </tr>
102
+ <tr>
103
+ <th>Model</th>
104
+ <th>MTE<sub>&uarr;</sub></th>
105
+ <th>cBLEU<sub>&uarr;</sub></th>
106
+ <th>TED<sub>&darr;</sub></th>
107
+ <th>DSim<sub>&uarr;</sub></th>
108
+ <th>KID<sub>&darr;</sub></th>
109
+ <th>MTE<sub>&uarr;</sub></th>
110
+ <th>cBLEU<sub>&uarr;</sub></th>
111
+ <th>TED<sub>&darr;</sub></th>
112
+ <th>DSim<sub>&uarr;</sub></th>
113
+ <th>KID<sub>&darr;</sub></th>
114
+ </tr>
115
+ <tr>
116
+ <td>DeTi<i>k</i>Zify<sub>v1</sub> (DS-7b)</td>
117
+ <td>84.019</td>
118
+ <td> 2.953</td>
119
+ <td>56.851</td>
120
+ <td>73.589</td>
121
+ <td> 8.423</td>
122
+ <td>84.401</td>
123
+ <td> 1.541</td>
124
+ <td>59.589</td>
125
+ <td>65.446</td>
126
+ <td> 7.66 </td>
127
+ </tr>
128
+ <tr>
129
+ <td>DeTi<i>k</i>Zify<sub>v2</sub> (8b)</td>
130
+ <td><b>93.326</b></td>
131
+ <td><b> 6.105</b></td>
132
+ <td><b>54.946</b></td>
133
+ <td><b>78.943</b></td>
134
+ <td><b> 6.256</b></td>
135
+ <td><b>93.858</b></td>
136
+ <td><b> 3.356</b></td>
137
+ <td><b>58.32 </b></td>
138
+ <td><b>72.969</b></td>
139
+ <td><b> 7.507</b></td>
140
+ </tr>
141
+ </table>