Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,139 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
###
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Model Card for DeTi*k*Zify<sub>v2</sub> (8b)
|
7 |
+
DeTi*k*Zify<sub>v2</sub> (8b) is a language model that automatically converts
|
8 |
+
sketches and existing scientific figures into editable, semantics-preserving
|
9 |
+
Ti*k*Z graphics programs. It is based on [LLaMA<sub>3.1</sub>
|
10 |
+
(8b)](https://huggingface.co/meta-llama/Llama-3.1-8B) and the SigLIP vision
|
11 |
+
encoder of [PaliGemma<sub>Mix-448</sub>
|
12 |
+
(3b)](https://huggingface.co/google/paligemma-3b-mix-448). Check out the
|
13 |
+
[DeTi*k*Zify](https://github.com/potamides/DeTikZify) project for more
|
14 |
+
information and tips on how to best run the model.
|
15 |
+
|
16 |
+
> [!WARNING]
|
17 |
+
> This release is considered a preview and may be updated in the near future.
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
```python
|
21 |
+
from operator import itemgetter
|
22 |
+
|
23 |
+
from detikzify.model import load
|
24 |
+
from detikzify.infer import DetikzifyPipeline
|
25 |
+
|
26 |
+
image = "https://w.wiki/A7Cc"
|
27 |
+
pipeline = DetikzifyPipeline(*load(
|
28 |
+
model_name_or_path="nllg/detikzify-v2-8b",
|
29 |
+
device_map="auto",
|
30 |
+
torch_dtype="bfloat16",
|
31 |
+
))
|
32 |
+
|
33 |
+
# generate a single TikZ program
|
34 |
+
fig = pipeline.sample(image=image)
|
35 |
+
|
36 |
+
# if it compiles, rasterize it and show it
|
37 |
+
if fig.is_rasterizable:
|
38 |
+
fig.rasterize().show()
|
39 |
+
|
40 |
+
# run MCTS for 10 minutes and generate multiple TikZ programs
|
41 |
+
figs = set()
|
42 |
+
for score, fig in pipeline.simulate(image=image, timeout=600):
|
43 |
+
figs.add((score, fig))
|
44 |
+
|
45 |
+
# save the best TikZ program
|
46 |
+
best = sorted(figs, key=itemgetter(0))[-1][1]
|
47 |
+
best.save("fig.tex")
|
48 |
+
```
|
49 |
+
|
50 |
+
## Changes from DeTi*k*Zify<sub>v1</sub>
|
51 |
+
|
52 |
+
### Architecture
|
53 |
+
Similar to DeTi*k*Zify<sub>v1</sub>, DeTi*k*Zify<sub>v2</sub> uses a SigLIP
|
54 |
+
vision encoder. However, inspired by the continued ViT pretraining of
|
55 |
+
[InternVL](https://arxiv.org/abs/2404.16821), we initialize the weights with
|
56 |
+
the fine-tuned vision encoder of [PaliGemma<sub>Mix-448</sub>
|
57 |
+
(3b)](https://arxiv.org/abs/2407.07726) and increase DeTi*k*Zify's
|
58 |
+
resolution to 420x420 pixels. Further, the vision encoder is no longer kept
|
59 |
+
frozen but fully fine-tuned with the rest of the model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
### Training Data
|
62 |
+
For pretraining, we switch from MetaFig to the much larger
|
63 |
+
[ArXivCap](https://huggingface.co/datasets/MMInstruction/ArxivCap) dataset and
|
64 |
+
extract 1 million (figure, caption, OCR) tuples for pretraining the modality
|
65 |
+
connector. For fine-tuning, we create a new DaTi*k*Z<sub>v3</sub> dataset (to
|
66 |
+
be released soon) with over 450k Ti*k*Z drawings.
|
67 |
+
|
68 |
+
We also train a new model called
|
69 |
+
[UltraSketch](https://huggingface.co/nllg/ultrasketch) to generate synthetic
|
70 |
+
sketches during training. It is based on
|
71 |
+
[UltraEdit](https://arxiv.org/abs/2407.05282) and achieves a congruence
|
72 |
+
coefficient (CC) of 0.74. Additionally, we generate synthetic sketches using
|
73 |
+
image transformation. While these sketches are less diverse, they are better at
|
74 |
+
preserving text rendering, achieving a similar CC of 0.75. When we average the
|
75 |
+
sketch representations produced by both methods, the resulting CC increases to
|
76 |
+
0.82, indicating that the methods are orthogonal and complement each other
|
77 |
+
effectively.
|
78 |
+
|
79 |
+
### Training & Inference
|
80 |
+
We observe improved performance by extending the training to 5 epochs and
|
81 |
+
increasing the learning rate to 5e-5. Fully fine-tuning the vision encoder
|
82 |
+
means that we can no longer compute SelfSim as the cosine similarity between
|
83 |
+
pooled outputs during inference, as the pooling head is not fine-tuned.
|
84 |
+
However, by instead computing Earth Mover's Distance on the fine-tuned patch
|
85 |
+
embeddings, it actually enhances the correlation with human judgments (0.456
|
86 |
+
segment-level and 0.911 system-level correlation). This means that
|
87 |
+
DeTikZify<sub>v2</sub> also works well with our MCTS-based inference algorithm.
|
88 |
+
|
89 |
+
# Evaluation
|
90 |
+
Here is how DeTi*k*Zify<sub>v2</sub> (8b) compares to
|
91 |
+
[DeTi<i>k</i>Zify<sub>v1</sub>
|
92 |
+
(DS-7b)](https://huggingface.co/nllg/detikzify-ds-7b), previously the best
|
93 |
+
performing DeTi*k*Zify model, as evaluated on the test split of
|
94 |
+
DaTi*k*Z<sub>v3</sub>.
|
95 |
+
|
96 |
+
<table>
|
97 |
+
<tr>
|
98 |
+
<th></th>
|
99 |
+
<th colspan="5">Reference Figures</th>
|
100 |
+
<th colspan="5">Reference Figures</th>
|
101 |
+
</tr>
|
102 |
+
<tr>
|
103 |
+
<th>Model</th>
|
104 |
+
<th>MTE<sub>↑</sub></th>
|
105 |
+
<th>cBLEU<sub>↑</sub></th>
|
106 |
+
<th>TED<sub>↓</sub></th>
|
107 |
+
<th>DSim<sub>↑</sub></th>
|
108 |
+
<th>KID<sub>↓</sub></th>
|
109 |
+
<th>MTE<sub>↑</sub></th>
|
110 |
+
<th>cBLEU<sub>↑</sub></th>
|
111 |
+
<th>TED<sub>↓</sub></th>
|
112 |
+
<th>DSim<sub>↑</sub></th>
|
113 |
+
<th>KID<sub>↓</sub></th>
|
114 |
+
</tr>
|
115 |
+
<tr>
|
116 |
+
<td>DeTi<i>k</i>Zify<sub>v1</sub> (DS-7b)</td>
|
117 |
+
<td>84.019</td>
|
118 |
+
<td> 2.953</td>
|
119 |
+
<td>56.851</td>
|
120 |
+
<td>73.589</td>
|
121 |
+
<td> 8.423</td>
|
122 |
+
<td>84.401</td>
|
123 |
+
<td> 1.541</td>
|
124 |
+
<td>59.589</td>
|
125 |
+
<td>65.446</td>
|
126 |
+
<td> 7.66 </td>
|
127 |
+
</tr>
|
128 |
+
<tr>
|
129 |
+
<td>DeTi<i>k</i>Zify<sub>v2</sub> (8b)</td>
|
130 |
+
<td><b>93.326</b></td>
|
131 |
+
<td><b> 6.105</b></td>
|
132 |
+
<td><b>54.946</b></td>
|
133 |
+
<td><b>78.943</b></td>
|
134 |
+
<td><b> 6.256</b></td>
|
135 |
+
<td><b>93.858</b></td>
|
136 |
+
<td><b> 3.356</b></td>
|
137 |
+
<td><b>58.32 </b></td>
|
138 |
+
<td><b>72.969</b></td>
|
139 |
+
<td><b> 7.507</b></td>
|
140 |
+
</tr>
|
141 |
+
</table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|