File size: 2,045 Bytes
cde4f26
 
 
e58eee3
cde4f26
 
 
 
 
 
 
 
 
 
d03aed8
cde4f26
bc3a7dd
 
cde4f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3a7dd
 
 
 
 
 
 
 
 
 
cde4f26
 
 
 
 
 
d03aed8
cde4f26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
tags:
- generated_from_keras_callback
datasets: nlp-esg-scoring/bert-base-finetuned-esg-snpcsr-clean
model-index:
- name: nlp-esg-scoring/bert-base-finetuned-esg-snpcsr-clean
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# nlp-esg-scoring/bert-base-finetuned-esg-snpcsr-clean

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.4074
- Validation Loss: 2.2353
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.4095     | 2.2167          | 0     |
| 2.4085     | 2.2081          | 1     |
| 2.4117     | 2.2194          | 2     |
| 2.4127     | 2.2173          | 3     |
| 2.4063     | 2.2011          | 4     |
| 2.4114     | 2.2102          | 5     |
| 2.4177     | 2.2123          | 6     |
| 2.4102     | 2.2174          | 7     |
| 2.4096     | 2.2211          | 8     |
| 2.4074     | 2.2353          | 9     |


### Framework versions

- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1