batyrme commited on
Commit
458ba08
1 Parent(s): 68553e7

Push model using huggingface_hub.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-large-instruct
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '"Он подарил мне красивое кольцо и прекрасную вечеринку на нашу годовщину."
14
+ Бұл мәтінді қазақ тіліне аударып беріңізші.'
15
+ - text: Would you please put that cigarette out? I get sick on it.
16
+ - text: Сәлем!
17
+ - text: Никусор Эшану
18
+ - text: How time flies! We have been lovers for nearly a year. We hit it off instantly.
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with intfloat/multilingual-e5-large-instruct
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.9955398215928637
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with intfloat/multilingual-e5-large-instruct
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 2 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:-------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | rag | <ul><li>'Саксон эпизоды туралы қандай тарихи құжатта мәлімет берілген?'</li><li>'Uttermost өзінің жарыс мансабында қандай маңызды жетістіктерге қол жеткізді?'</li><li>'Ричард Бахтелл'</li></ul> |
67
+ | no_rag | <ul><li>'Just a moment, please.'</li><li>'орыс тіліндегі "Я рабочий." сөйлемінің қазақ тіліндегі аудармасы не?'</li><li>'You look tired. Did you sleep well last night?'</li></ul> |
68
+
69
+ ## Evaluation
70
+
71
+ ### Metrics
72
+ | Label | Accuracy |
73
+ |:--------|:---------|
74
+ | **all** | 0.9955 |
75
+
76
+ ## Uses
77
+
78
+ ### Direct Use for Inference
79
+
80
+ First install the SetFit library:
81
+
82
+ ```bash
83
+ pip install setfit
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+
88
+ ```python
89
+ from setfit import SetFitModel
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SetFitModel.from_pretrained("nlp-team-issai/setfit-me5-large-instruct-v3")
93
+ # Run inference
94
+ preds = model("Сәлем!")
95
+ ```
96
+
97
+ <!--
98
+ ### Downstream Use
99
+
100
+ *List how someone could finetune this model on their own dataset.*
101
+ -->
102
+
103
+ <!--
104
+ ### Out-of-Scope Use
105
+
106
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
+ -->
108
+
109
+ <!--
110
+ ## Bias, Risks and Limitations
111
+
112
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
+ -->
114
+
115
+ <!--
116
+ ### Recommendations
117
+
118
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
+ -->
120
+
121
+ ## Training Details
122
+
123
+ ### Training Set Metrics
124
+ | Training set | Min | Median | Max |
125
+ |:-------------|:----|:--------|:----|
126
+ | Word count | 1 | 10.0022 | 138 |
127
+
128
+ | Label | Training Sample Count |
129
+ |:-------|:----------------------|
130
+ | no_rag | 218 |
131
+ | rag | 241 |
132
+
133
+ ### Training Hyperparameters
134
+ - batch_size: (16, 16)
135
+ - num_epochs: (1, 1)
136
+ - max_steps: -1
137
+ - sampling_strategy: oversampling
138
+ - body_learning_rate: (2e-05, 1e-05)
139
+ - head_learning_rate: 0.01
140
+ - loss: CosineSimilarityLoss
141
+ - distance_metric: cosine_distance
142
+ - margin: 0.25
143
+ - end_to_end: False
144
+ - use_amp: False
145
+ - warmup_proportion: 0.1
146
+ - l2_weight: 0.01
147
+ - seed: 42
148
+ - eval_max_steps: -1
149
+ - load_best_model_at_end: False
150
+
151
+ ### Training Results
152
+ | Epoch | Step | Training Loss | Validation Loss |
153
+ |:------:|:----:|:-------------:|:---------------:|
154
+ | 0.0003 | 1 | 0.3567 | - |
155
+ | 0.0151 | 50 | 0.2851 | - |
156
+ | 0.0302 | 100 | 0.0943 | - |
157
+ | 0.0452 | 150 | 0.0123 | - |
158
+ | 0.0603 | 200 | 0.0099 | - |
159
+ | 0.0754 | 250 | 0.0056 | - |
160
+ | 0.0905 | 300 | 0.0011 | - |
161
+ | 0.1056 | 350 | 0.0003 | - |
162
+ | 0.1207 | 400 | 0.0002 | - |
163
+ | 0.1357 | 450 | 0.0001 | - |
164
+ | 0.1508 | 500 | 0.0001 | - |
165
+ | 0.1659 | 550 | 0.0001 | - |
166
+ | 0.1810 | 600 | 0.0001 | - |
167
+ | 0.1961 | 650 | 0.0001 | - |
168
+ | 0.2112 | 700 | 0.0001 | - |
169
+ | 0.2262 | 750 | 0.0001 | - |
170
+ | 0.2413 | 800 | 0.0001 | - |
171
+ | 0.2564 | 850 | 0.0001 | - |
172
+ | 0.2715 | 900 | 0.0001 | - |
173
+ | 0.2866 | 950 | 0.0001 | - |
174
+ | 0.3017 | 1000 | 0.0001 | - |
175
+ | 0.3167 | 1050 | 0.0001 | - |
176
+ | 0.3318 | 1100 | 0.0001 | - |
177
+ | 0.3469 | 1150 | 0.0001 | - |
178
+ | 0.3620 | 1200 | 0.0001 | - |
179
+ | 0.3771 | 1250 | 0.0001 | - |
180
+ | 0.3922 | 1300 | 0.0001 | - |
181
+ | 0.4072 | 1350 | 0.0001 | - |
182
+ | 0.4223 | 1400 | 0.0 | - |
183
+ | 0.4374 | 1450 | 0.0 | - |
184
+ | 0.4525 | 1500 | 0.0 | - |
185
+ | 0.4676 | 1550 | 0.0 | - |
186
+ | 0.4827 | 1600 | 0.0 | - |
187
+ | 0.4977 | 1650 | 0.0 | - |
188
+ | 0.5128 | 1700 | 0.0 | - |
189
+ | 0.5279 | 1750 | 0.0 | - |
190
+ | 0.5430 | 1800 | 0.0 | - |
191
+ | 0.5581 | 1850 | 0.0 | - |
192
+ | 0.5732 | 1900 | 0.0 | - |
193
+ | 0.5882 | 1950 | 0.0 | - |
194
+ | 0.6033 | 2000 | 0.0 | - |
195
+ | 0.6184 | 2050 | 0.0 | - |
196
+ | 0.6335 | 2100 | 0.0 | - |
197
+ | 0.6486 | 2150 | 0.0 | - |
198
+ | 0.6637 | 2200 | 0.0 | - |
199
+ | 0.6787 | 2250 | 0.0 | - |
200
+ | 0.6938 | 2300 | 0.0 | - |
201
+ | 0.7089 | 2350 | 0.0 | - |
202
+ | 0.7240 | 2400 | 0.0 | - |
203
+ | 0.7391 | 2450 | 0.0 | - |
204
+ | 0.7541 | 2500 | 0.0 | - |
205
+ | 0.7692 | 2550 | 0.0 | - |
206
+ | 0.7843 | 2600 | 0.0 | - |
207
+ | 0.7994 | 2650 | 0.0 | - |
208
+ | 0.8145 | 2700 | 0.0 | - |
209
+ | 0.8296 | 2750 | 0.0 | - |
210
+ | 0.8446 | 2800 | 0.0 | - |
211
+ | 0.8597 | 2850 | 0.0 | - |
212
+ | 0.8748 | 2900 | 0.0 | - |
213
+ | 0.8899 | 2950 | 0.0 | - |
214
+ | 0.9050 | 3000 | 0.0 | - |
215
+ | 0.9201 | 3050 | 0.0 | - |
216
+ | 0.9351 | 3100 | 0.0 | - |
217
+ | 0.9502 | 3150 | 0.0 | - |
218
+ | 0.9653 | 3200 | 0.0 | - |
219
+ | 0.9804 | 3250 | 0.0 | - |
220
+ | 0.9955 | 3300 | 0.0 | - |
221
+
222
+ ### Framework Versions
223
+ - Python: 3.12.5
224
+ - SetFit: 1.1.0
225
+ - Sentence Transformers: 3.2.0
226
+ - Transformers: 4.45.2
227
+ - PyTorch: 2.4.0+cu121
228
+ - Datasets: 3.0.1
229
+ - Tokenizers: 0.20.0
230
+
231
+ ## Citation
232
+
233
+ ### BibTeX
234
+ ```bibtex
235
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
236
+ doi = {10.48550/ARXIV.2209.11055},
237
+ url = {https://arxiv.org/abs/2209.11055},
238
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
239
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
240
+ title = {Efficient Few-Shot Learning Without Prompts},
241
+ publisher = {arXiv},
242
+ year = {2022},
243
+ copyright = {Creative Commons Attribution 4.0 International}
244
+ }
245
+ ```
246
+
247
+ <!--
248
+ ## Glossary
249
+
250
+ *Clearly define terms in order to be accessible across audiences.*
251
+ -->
252
+
253
+ <!--
254
+ ## Model Card Authors
255
+
256
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
257
+ -->
258
+
259
+ <!--
260
+ ## Model Card Contact
261
+
262
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
263
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large-instruct",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.45.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "no_rag",
5
+ "rag"
6
+ ]
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abdea1c7637acb9a3a9355f509faff00df12fb2845b04e7a3f6ebdb990d2931b
3
+ size 2239607176
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8e3ecfcf1cfe2fb21473bc20686b2addb262ce2e3e103dc70998bdf8ee8f64e
3
+ size 9055
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }