File size: 19,449 Bytes
8def625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
2023-04-06 05:00:57,477 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,477 Model: "SequenceTagger(
(embeddings): StackedEmbeddings(
(list_embedding_0): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.25, inplace=False)
(encoder): Embedding(275, 100)
(rnn): LSTM(100, 2048)
(decoder): Linear(in_features=2048, out_features=275, bias=True)
)
)
(list_embedding_1): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.25, inplace=False)
(encoder): Embedding(275, 100)
(rnn): LSTM(100, 2048)
(decoder): Linear(in_features=2048, out_features=275, bias=True)
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(embedding2nn): Linear(in_features=4096, out_features=4096, bias=True)
(rnn): LSTM(4096, 256, batch_first=True, bidirectional=True)
(linear): Linear(in_features=512, out_features=23, bias=True)
(loss_function): ViterbiLoss()
(crf): CRF()
)"
2023-04-06 05:00:57,479 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,480 Corpus: "Corpus: 3200 train + 401 dev + 401 test sentences"
2023-04-06 05:00:57,480 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,480 Parameters:
2023-04-06 05:00:57,480 - learning_rate: "0.100000"
2023-04-06 05:00:57,481 - mini_batch_size: "32"
2023-04-06 05:00:57,481 - patience: "3"
2023-04-06 05:00:57,481 - anneal_factor: "0.5"
2023-04-06 05:00:57,481 - max_epochs: "10"
2023-04-06 05:00:57,482 - shuffle: "True"
2023-04-06 05:00:57,482 - train_with_dev: "False"
2023-04-06 05:00:57,482 - batch_growth_annealing: "False"
2023-04-06 05:00:57,483 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,483 Model training base path: "db/kgc_models/flair-spec-cons/trained_model"
2023-04-06 05:00:57,483 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,483 Device: cuda:0
2023-04-06 05:00:57,484 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,484 Embeddings storage mode: gpu
2023-04-06 05:00:57,484 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:58,191 epoch 1 - iter 10/100 - loss 2.54841670 - samples/sec: 453.70 - lr: 0.100000
2023-04-06 05:00:58,981 epoch 1 - iter 20/100 - loss 2.33677462 - samples/sec: 406.16 - lr: 0.100000
2023-04-06 05:00:59,670 epoch 1 - iter 30/100 - loss 2.15419054 - samples/sec: 464.94 - lr: 0.100000
2023-04-06 05:01:00,342 epoch 1 - iter 40/100 - loss 1.98991539 - samples/sec: 477.32 - lr: 0.100000
2023-04-06 05:01:01,018 epoch 1 - iter 50/100 - loss 1.89150122 - samples/sec: 474.61 - lr: 0.100000
2023-04-06 05:01:01,710 epoch 1 - iter 60/100 - loss 1.80637456 - samples/sec: 463.46 - lr: 0.100000
2023-04-06 05:01:02,411 epoch 1 - iter 70/100 - loss 1.74580158 - samples/sec: 457.25 - lr: 0.100000
2023-04-06 05:01:03,155 epoch 1 - iter 80/100 - loss 1.67068108 - samples/sec: 430.69 - lr: 0.100000
2023-04-06 05:01:03,906 epoch 1 - iter 90/100 - loss 1.61186574 - samples/sec: 427.18 - lr: 0.100000
2023-04-06 05:01:04,621 epoch 1 - iter 100/100 - loss 1.57518982 - samples/sec: 448.53 - lr: 0.100000
2023-04-06 05:01:04,621 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:04,622 EPOCH 1 done: loss 1.5752 - lr 0.100000
2023-04-06 05:01:05,978 Evaluating as a multi-label problem: False
2023-04-06 05:01:05,992 DEV : loss 0.9883462190628052 - f1-score (micro avg) 0.5583
2023-04-06 05:01:05,998 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:06,000 saving best model
2023-04-06 05:01:07,645 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:07,958 epoch 2 - iter 10/100 - loss 1.07820137 - samples/sec: 1030.85 - lr: 0.100000
2023-04-06 05:01:08,263 epoch 2 - iter 20/100 - loss 1.04921650 - samples/sec: 1053.15 - lr: 0.100000
2023-04-06 05:01:08,548 epoch 2 - iter 30/100 - loss 1.01492418 - samples/sec: 1130.08 - lr: 0.100000
2023-04-06 05:01:08,880 epoch 2 - iter 40/100 - loss 1.01476922 - samples/sec: 969.31 - lr: 0.100000
2023-04-06 05:01:09,162 epoch 2 - iter 50/100 - loss 0.98812696 - samples/sec: 1137.46 - lr: 0.100000
2023-04-06 05:01:09,492 epoch 2 - iter 60/100 - loss 0.96852050 - samples/sec: 974.46 - lr: 0.100000
2023-04-06 05:01:09,771 epoch 2 - iter 70/100 - loss 0.96147093 - samples/sec: 1155.02 - lr: 0.100000
2023-04-06 05:01:10,078 epoch 2 - iter 80/100 - loss 0.94764571 - samples/sec: 1046.79 - lr: 0.100000
2023-04-06 05:01:10,380 epoch 2 - iter 90/100 - loss 0.93687541 - samples/sec: 1063.94 - lr: 0.100000
2023-04-06 05:01:10,680 epoch 2 - iter 100/100 - loss 0.92128929 - samples/sec: 1074.48 - lr: 0.100000
2023-04-06 05:01:10,681 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:10,682 EPOCH 2 done: loss 0.9213 - lr 0.100000
2023-04-06 05:01:11,480 Evaluating as a multi-label problem: False
2023-04-06 05:01:11,493 DEV : loss 0.6865214705467224 - f1-score (micro avg) 0.6667
2023-04-06 05:01:11,501 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:11,502 saving best model
2023-04-06 05:01:13,122 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:13,415 epoch 3 - iter 10/100 - loss 0.80292226 - samples/sec: 1098.71 - lr: 0.100000
2023-04-06 05:01:13,703 epoch 3 - iter 20/100 - loss 0.80121644 - samples/sec: 1116.92 - lr: 0.100000
2023-04-06 05:01:14,000 epoch 3 - iter 30/100 - loss 0.78842391 - samples/sec: 1082.53 - lr: 0.100000
2023-04-06 05:01:14,300 epoch 3 - iter 40/100 - loss 0.78760832 - samples/sec: 1073.66 - lr: 0.100000
2023-04-06 05:01:14,624 epoch 3 - iter 50/100 - loss 0.78730520 - samples/sec: 991.17 - lr: 0.100000
2023-04-06 05:01:14,931 epoch 3 - iter 60/100 - loss 0.77427673 - samples/sec: 1049.45 - lr: 0.100000
2023-04-06 05:01:15,236 epoch 3 - iter 70/100 - loss 0.76768125 - samples/sec: 1054.20 - lr: 0.100000
2023-04-06 05:01:15,519 epoch 3 - iter 80/100 - loss 0.75606934 - samples/sec: 1138.62 - lr: 0.100000
2023-04-06 05:01:15,821 epoch 3 - iter 90/100 - loss 0.75874242 - samples/sec: 1064.79 - lr: 0.100000
2023-04-06 05:01:16,109 epoch 3 - iter 100/100 - loss 0.74525913 - samples/sec: 1116.10 - lr: 0.100000
2023-04-06 05:01:16,110 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:16,110 EPOCH 3 done: loss 0.7453 - lr 0.100000
2023-04-06 05:01:16,887 Evaluating as a multi-label problem: False
2023-04-06 05:01:16,899 DEV : loss 0.614136278629303 - f1-score (micro avg) 0.7101
2023-04-06 05:01:16,906 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:16,908 saving best model
2023-04-06 05:01:18,556 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:18,835 epoch 4 - iter 10/100 - loss 0.64661913 - samples/sec: 1153.86 - lr: 0.100000
2023-04-06 05:01:19,137 epoch 4 - iter 20/100 - loss 0.62497328 - samples/sec: 1065.76 - lr: 0.100000
2023-04-06 05:01:19,419 epoch 4 - iter 30/100 - loss 0.63771202 - samples/sec: 1143.26 - lr: 0.100000
2023-04-06 05:01:19,759 epoch 4 - iter 40/100 - loss 0.64536114 - samples/sec: 944.68 - lr: 0.100000
2023-04-06 05:01:20,029 epoch 4 - iter 50/100 - loss 0.65670237 - samples/sec: 1189.03 - lr: 0.100000
2023-04-06 05:01:20,327 epoch 4 - iter 60/100 - loss 0.65096773 - samples/sec: 1079.77 - lr: 0.100000
2023-04-06 05:01:20,611 epoch 4 - iter 70/100 - loss 0.64386307 - samples/sec: 1132.05 - lr: 0.100000
2023-04-06 05:01:20,903 epoch 4 - iter 80/100 - loss 0.64342225 - samples/sec: 1102.42 - lr: 0.100000
2023-04-06 05:01:21,199 epoch 4 - iter 90/100 - loss 0.64639085 - samples/sec: 1088.24 - lr: 0.100000
2023-04-06 05:01:21,486 epoch 4 - iter 100/100 - loss 0.64023060 - samples/sec: 1119.16 - lr: 0.100000
2023-04-06 05:01:21,487 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:21,487 EPOCH 4 done: loss 0.6402 - lr 0.100000
2023-04-06 05:01:22,479 Evaluating as a multi-label problem: False
2023-04-06 05:01:22,490 DEV : loss 0.5573540925979614 - f1-score (micro avg) 0.7454
2023-04-06 05:01:22,497 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:22,498 saving best model
2023-04-06 05:01:24,161 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:24,456 epoch 5 - iter 10/100 - loss 0.61543932 - samples/sec: 1093.46 - lr: 0.100000
2023-04-06 05:01:24,754 epoch 5 - iter 20/100 - loss 0.58400124 - samples/sec: 1079.67 - lr: 0.100000
2023-04-06 05:01:25,064 epoch 5 - iter 30/100 - loss 0.56852493 - samples/sec: 1038.59 - lr: 0.100000
2023-04-06 05:01:25,358 epoch 5 - iter 40/100 - loss 0.57995167 - samples/sec: 1094.36 - lr: 0.100000
2023-04-06 05:01:25,683 epoch 5 - iter 50/100 - loss 0.57421334 - samples/sec: 987.87 - lr: 0.100000
2023-04-06 05:01:25,987 epoch 5 - iter 60/100 - loss 0.56522019 - samples/sec: 1059.99 - lr: 0.100000
2023-04-06 05:01:26,284 epoch 5 - iter 70/100 - loss 0.56915244 - samples/sec: 1082.58 - lr: 0.100000
2023-04-06 05:01:26,587 epoch 5 - iter 80/100 - loss 0.56741243 - samples/sec: 1060.07 - lr: 0.100000
2023-04-06 05:01:26,873 epoch 5 - iter 90/100 - loss 0.56403810 - samples/sec: 1122.34 - lr: 0.100000
2023-04-06 05:01:27,162 epoch 5 - iter 100/100 - loss 0.56619930 - samples/sec: 1116.38 - lr: 0.100000
2023-04-06 05:01:27,163 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:27,163 EPOCH 5 done: loss 0.5662 - lr 0.100000
2023-04-06 05:01:27,972 Evaluating as a multi-label problem: False
2023-04-06 05:01:27,984 DEV : loss 0.4954551160335541 - f1-score (micro avg) 0.7711
2023-04-06 05:01:27,992 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:27,994 saving best model
2023-04-06 05:01:29,618 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:29,920 epoch 6 - iter 10/100 - loss 0.51276362 - samples/sec: 1067.10 - lr: 0.100000
2023-04-06 05:01:30,220 epoch 6 - iter 20/100 - loss 0.51676351 - samples/sec: 1074.30 - lr: 0.100000
2023-04-06 05:01:30,528 epoch 6 - iter 30/100 - loss 0.51920724 - samples/sec: 1043.78 - lr: 0.100000
2023-04-06 05:01:30,844 epoch 6 - iter 40/100 - loss 0.53617170 - samples/sec: 1016.64 - lr: 0.100000
2023-04-06 05:01:31,157 epoch 6 - iter 50/100 - loss 0.52303169 - samples/sec: 1029.79 - lr: 0.100000
2023-04-06 05:01:31,472 epoch 6 - iter 60/100 - loss 0.52088512 - samples/sec: 1019.45 - lr: 0.100000
2023-04-06 05:01:31,875 epoch 6 - iter 70/100 - loss 0.51524863 - samples/sec: 797.62 - lr: 0.100000
2023-04-06 05:01:32,197 epoch 6 - iter 80/100 - loss 0.52052504 - samples/sec: 999.15 - lr: 0.100000
2023-04-06 05:01:32,524 epoch 6 - iter 90/100 - loss 0.51383911 - samples/sec: 984.59 - lr: 0.100000
2023-04-06 05:01:32,835 epoch 6 - iter 100/100 - loss 0.50979660 - samples/sec: 1039.46 - lr: 0.100000
2023-04-06 05:01:32,836 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:32,836 EPOCH 6 done: loss 0.5098 - lr 0.100000
2023-04-06 05:01:33,785 Evaluating as a multi-label problem: False
2023-04-06 05:01:33,799 DEV : loss 0.45735692977905273 - f1-score (micro avg) 0.7692
2023-04-06 05:01:33,807 BAD EPOCHS (no improvement): 1
2023-04-06 05:01:33,812 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:34,146 epoch 7 - iter 10/100 - loss 0.48405916 - samples/sec: 964.88 - lr: 0.100000
2023-04-06 05:01:34,473 epoch 7 - iter 20/100 - loss 0.46699604 - samples/sec: 986.48 - lr: 0.100000
2023-04-06 05:01:34,807 epoch 7 - iter 30/100 - loss 0.47639370 - samples/sec: 961.54 - lr: 0.100000
2023-04-06 05:01:35,134 epoch 7 - iter 40/100 - loss 0.48267184 - samples/sec: 983.20 - lr: 0.100000
2023-04-06 05:01:35,468 epoch 7 - iter 50/100 - loss 0.47247635 - samples/sec: 962.07 - lr: 0.100000
2023-04-06 05:01:35,772 epoch 7 - iter 60/100 - loss 0.47543941 - samples/sec: 1061.04 - lr: 0.100000
2023-04-06 05:01:36,101 epoch 7 - iter 70/100 - loss 0.47814133 - samples/sec: 977.64 - lr: 0.100000
2023-04-06 05:01:36,440 epoch 7 - iter 80/100 - loss 0.47698574 - samples/sec: 948.03 - lr: 0.100000
2023-04-06 05:01:36,747 epoch 7 - iter 90/100 - loss 0.47987035 - samples/sec: 1047.95 - lr: 0.100000
2023-04-06 05:01:37,066 epoch 7 - iter 100/100 - loss 0.47570336 - samples/sec: 1008.92 - lr: 0.100000
2023-04-06 05:01:37,067 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:37,070 EPOCH 7 done: loss 0.4757 - lr 0.100000
2023-04-06 05:01:37,941 Evaluating as a multi-label problem: False
2023-04-06 05:01:37,952 DEV : loss 0.44222691655158997 - f1-score (micro avg) 0.7888
2023-04-06 05:01:37,960 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:37,961 saving best model
2023-04-06 05:01:40,394 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:40,854 epoch 8 - iter 10/100 - loss 0.45383867 - samples/sec: 700.65 - lr: 0.100000
2023-04-06 05:01:41,173 epoch 8 - iter 20/100 - loss 0.43853387 - samples/sec: 1008.63 - lr: 0.100000
2023-04-06 05:01:41,480 epoch 8 - iter 30/100 - loss 0.44842076 - samples/sec: 1045.92 - lr: 0.100000
2023-04-06 05:01:41,815 epoch 8 - iter 40/100 - loss 0.44778312 - samples/sec: 962.63 - lr: 0.100000
2023-04-06 05:01:42,123 epoch 8 - iter 50/100 - loss 0.45261274 - samples/sec: 1044.30 - lr: 0.100000
2023-04-06 05:01:42,467 epoch 8 - iter 60/100 - loss 0.45202269 - samples/sec: 932.97 - lr: 0.100000
2023-04-06 05:01:42,766 epoch 8 - iter 70/100 - loss 0.44615702 - samples/sec: 1078.30 - lr: 0.100000
2023-04-06 05:01:43,090 epoch 8 - iter 80/100 - loss 0.44471005 - samples/sec: 990.40 - lr: 0.100000
2023-04-06 05:01:43,390 epoch 8 - iter 90/100 - loss 0.44290559 - samples/sec: 1074.92 - lr: 0.100000
2023-04-06 05:01:43,716 epoch 8 - iter 100/100 - loss 0.44319155 - samples/sec: 984.69 - lr: 0.100000
2023-04-06 05:01:43,717 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:43,720 EPOCH 8 done: loss 0.4432 - lr 0.100000
2023-04-06 05:01:44,604 Evaluating as a multi-label problem: False
2023-04-06 05:01:44,615 DEV : loss 0.4376998245716095 - f1-score (micro avg) 0.7692
2023-04-06 05:01:44,623 BAD EPOCHS (no improvement): 1
2023-04-06 05:01:44,625 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:44,962 epoch 9 - iter 10/100 - loss 0.38774550 - samples/sec: 954.84 - lr: 0.100000
2023-04-06 05:01:45,286 epoch 9 - iter 20/100 - loss 0.41776223 - samples/sec: 991.11 - lr: 0.100000
2023-04-06 05:01:45,599 epoch 9 - iter 30/100 - loss 0.42511250 - samples/sec: 1028.88 - lr: 0.100000
2023-04-06 05:01:45,945 epoch 9 - iter 40/100 - loss 0.42112254 - samples/sec: 930.71 - lr: 0.100000
2023-04-06 05:01:46,274 epoch 9 - iter 50/100 - loss 0.42444511 - samples/sec: 976.78 - lr: 0.100000
2023-04-06 05:01:46,603 epoch 9 - iter 60/100 - loss 0.42389968 - samples/sec: 977.72 - lr: 0.100000
2023-04-06 05:01:46,926 epoch 9 - iter 70/100 - loss 0.41802363 - samples/sec: 996.06 - lr: 0.100000
2023-04-06 05:01:47,281 epoch 9 - iter 80/100 - loss 0.41442777 - samples/sec: 906.83 - lr: 0.100000
2023-04-06 05:01:47,611 epoch 9 - iter 90/100 - loss 0.41460733 - samples/sec: 975.57 - lr: 0.100000
2023-04-06 05:01:48,003 epoch 9 - iter 100/100 - loss 0.41394752 - samples/sec: 820.27 - lr: 0.100000
2023-04-06 05:01:48,005 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:48,011 EPOCH 9 done: loss 0.4139 - lr 0.100000
2023-04-06 05:01:48,916 Evaluating as a multi-label problem: False
2023-04-06 05:01:48,928 DEV : loss 0.4502558410167694 - f1-score (micro avg) 0.7756
2023-04-06 05:01:48,936 BAD EPOCHS (no improvement): 2
2023-04-06 05:01:48,940 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:49,272 epoch 10 - iter 10/100 - loss 0.37656011 - samples/sec: 980.38 - lr: 0.100000
2023-04-06 05:01:49,616 epoch 10 - iter 20/100 - loss 0.39638115 - samples/sec: 936.73 - lr: 0.100000
2023-04-06 05:01:49,952 epoch 10 - iter 30/100 - loss 0.39364339 - samples/sec: 956.19 - lr: 0.100000
2023-04-06 05:01:50,279 epoch 10 - iter 40/100 - loss 0.39287102 - samples/sec: 984.94 - lr: 0.100000
2023-04-06 05:01:50,603 epoch 10 - iter 50/100 - loss 0.39715304 - samples/sec: 992.09 - lr: 0.100000
2023-04-06 05:01:50,938 epoch 10 - iter 60/100 - loss 0.38995911 - samples/sec: 961.94 - lr: 0.100000
2023-04-06 05:01:51,244 epoch 10 - iter 70/100 - loss 0.39104831 - samples/sec: 1050.41 - lr: 0.100000
2023-04-06 05:01:51,569 epoch 10 - iter 80/100 - loss 0.39384103 - samples/sec: 988.09 - lr: 0.100000
2023-04-06 05:01:51,891 epoch 10 - iter 90/100 - loss 0.39865212 - samples/sec: 1000.92 - lr: 0.100000
2023-04-06 05:01:52,221 epoch 10 - iter 100/100 - loss 0.40034652 - samples/sec: 975.07 - lr: 0.100000
2023-04-06 05:01:52,222 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:52,222 EPOCH 10 done: loss 0.4003 - lr 0.100000
2023-04-06 05:01:53,082 Evaluating as a multi-label problem: False
2023-04-06 05:01:53,094 DEV : loss 0.4299003481864929 - f1-score (micro avg) 0.7812
2023-04-06 05:01:53,102 BAD EPOCHS (no improvement): 3
2023-04-06 05:01:58,853 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:58,855 loading file db/kgc_models/flair-spec-cons/trained_model/best-model.pt
2023-04-06 05:02:08,102 SequenceTagger predicts: Dictionary with 23 tags: O, S-Item, B-Item, E-Item, I-Item, S-Activity, B-Activity, E-Activity, I-Activity, S-Observation, B-Observation, E-Observation, I-Observation, S-Consumable, B-Consumable, E-Consumable, I-Consumable, S-Specifier, B-Specifier, E-Specifier, I-Specifier, <START>, <STOP>
2023-04-06 05:02:09,735 Evaluating as a multi-label problem: False
2023-04-06 05:02:09,746 0.7132 0.7412 0.7269 0.5798
2023-04-06 05:02:09,747
Results:
- F-score (micro) 0.7269
- F-score (macro) 0.75
- Accuracy 0.5798
By class:
precision recall f1-score support
Item 0.6489 0.7064 0.6764 361
Activity 0.8324 0.8556 0.8438 180
Observation 0.7108 0.6860 0.6982 172
Consumable 0.7907 0.7727 0.7816 44
Specifier 0.7500 0.7500 0.7500 8
micro avg 0.7132 0.7412 0.7269 765
macro avg 0.7466 0.7541 0.7500 765
weighted avg 0.7152 0.7412 0.7275 765
2023-04-06 05:02:09,747 ----------------------------------------------------------------------------------------------------
|