File size: 19,449 Bytes
8def625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
2023-04-06 05:00:57,477 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,477 Model: "SequenceTagger(
  (embeddings): StackedEmbeddings(
    (list_embedding_0): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.25, inplace=False)
        (encoder): Embedding(275, 100)
        (rnn): LSTM(100, 2048)
        (decoder): Linear(in_features=2048, out_features=275, bias=True)
      )
    )
    (list_embedding_1): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.25, inplace=False)
        (encoder): Embedding(275, 100)
        (rnn): LSTM(100, 2048)
        (decoder): Linear(in_features=2048, out_features=275, bias=True)
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=4096, out_features=4096, bias=True)
  (rnn): LSTM(4096, 256, batch_first=True, bidirectional=True)
  (linear): Linear(in_features=512, out_features=23, bias=True)
  (loss_function): ViterbiLoss()
  (crf): CRF()
)"
2023-04-06 05:00:57,479 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,480 Corpus: "Corpus: 3200 train + 401 dev + 401 test sentences"
2023-04-06 05:00:57,480 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,480 Parameters:
2023-04-06 05:00:57,480  - learning_rate: "0.100000"
2023-04-06 05:00:57,481  - mini_batch_size: "32"
2023-04-06 05:00:57,481  - patience: "3"
2023-04-06 05:00:57,481  - anneal_factor: "0.5"
2023-04-06 05:00:57,481  - max_epochs: "10"
2023-04-06 05:00:57,482  - shuffle: "True"
2023-04-06 05:00:57,482  - train_with_dev: "False"
2023-04-06 05:00:57,482  - batch_growth_annealing: "False"
2023-04-06 05:00:57,483 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,483 Model training base path: "db/kgc_models/flair-spec-cons/trained_model"
2023-04-06 05:00:57,483 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,483 Device: cuda:0
2023-04-06 05:00:57,484 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:57,484 Embeddings storage mode: gpu
2023-04-06 05:00:57,484 ----------------------------------------------------------------------------------------------------
2023-04-06 05:00:58,191 epoch 1 - iter 10/100 - loss 2.54841670 - samples/sec: 453.70 - lr: 0.100000
2023-04-06 05:00:58,981 epoch 1 - iter 20/100 - loss 2.33677462 - samples/sec: 406.16 - lr: 0.100000
2023-04-06 05:00:59,670 epoch 1 - iter 30/100 - loss 2.15419054 - samples/sec: 464.94 - lr: 0.100000
2023-04-06 05:01:00,342 epoch 1 - iter 40/100 - loss 1.98991539 - samples/sec: 477.32 - lr: 0.100000
2023-04-06 05:01:01,018 epoch 1 - iter 50/100 - loss 1.89150122 - samples/sec: 474.61 - lr: 0.100000
2023-04-06 05:01:01,710 epoch 1 - iter 60/100 - loss 1.80637456 - samples/sec: 463.46 - lr: 0.100000
2023-04-06 05:01:02,411 epoch 1 - iter 70/100 - loss 1.74580158 - samples/sec: 457.25 - lr: 0.100000
2023-04-06 05:01:03,155 epoch 1 - iter 80/100 - loss 1.67068108 - samples/sec: 430.69 - lr: 0.100000
2023-04-06 05:01:03,906 epoch 1 - iter 90/100 - loss 1.61186574 - samples/sec: 427.18 - lr: 0.100000
2023-04-06 05:01:04,621 epoch 1 - iter 100/100 - loss 1.57518982 - samples/sec: 448.53 - lr: 0.100000
2023-04-06 05:01:04,621 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:04,622 EPOCH 1 done: loss 1.5752 - lr 0.100000
2023-04-06 05:01:05,978 Evaluating as a multi-label problem: False
2023-04-06 05:01:05,992 DEV : loss 0.9883462190628052 - f1-score (micro avg)  0.5583
2023-04-06 05:01:05,998 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:06,000 saving best model
2023-04-06 05:01:07,645 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:07,958 epoch 2 - iter 10/100 - loss 1.07820137 - samples/sec: 1030.85 - lr: 0.100000
2023-04-06 05:01:08,263 epoch 2 - iter 20/100 - loss 1.04921650 - samples/sec: 1053.15 - lr: 0.100000
2023-04-06 05:01:08,548 epoch 2 - iter 30/100 - loss 1.01492418 - samples/sec: 1130.08 - lr: 0.100000
2023-04-06 05:01:08,880 epoch 2 - iter 40/100 - loss 1.01476922 - samples/sec: 969.31 - lr: 0.100000
2023-04-06 05:01:09,162 epoch 2 - iter 50/100 - loss 0.98812696 - samples/sec: 1137.46 - lr: 0.100000
2023-04-06 05:01:09,492 epoch 2 - iter 60/100 - loss 0.96852050 - samples/sec: 974.46 - lr: 0.100000
2023-04-06 05:01:09,771 epoch 2 - iter 70/100 - loss 0.96147093 - samples/sec: 1155.02 - lr: 0.100000
2023-04-06 05:01:10,078 epoch 2 - iter 80/100 - loss 0.94764571 - samples/sec: 1046.79 - lr: 0.100000
2023-04-06 05:01:10,380 epoch 2 - iter 90/100 - loss 0.93687541 - samples/sec: 1063.94 - lr: 0.100000
2023-04-06 05:01:10,680 epoch 2 - iter 100/100 - loss 0.92128929 - samples/sec: 1074.48 - lr: 0.100000
2023-04-06 05:01:10,681 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:10,682 EPOCH 2 done: loss 0.9213 - lr 0.100000
2023-04-06 05:01:11,480 Evaluating as a multi-label problem: False
2023-04-06 05:01:11,493 DEV : loss 0.6865214705467224 - f1-score (micro avg)  0.6667
2023-04-06 05:01:11,501 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:11,502 saving best model
2023-04-06 05:01:13,122 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:13,415 epoch 3 - iter 10/100 - loss 0.80292226 - samples/sec: 1098.71 - lr: 0.100000
2023-04-06 05:01:13,703 epoch 3 - iter 20/100 - loss 0.80121644 - samples/sec: 1116.92 - lr: 0.100000
2023-04-06 05:01:14,000 epoch 3 - iter 30/100 - loss 0.78842391 - samples/sec: 1082.53 - lr: 0.100000
2023-04-06 05:01:14,300 epoch 3 - iter 40/100 - loss 0.78760832 - samples/sec: 1073.66 - lr: 0.100000
2023-04-06 05:01:14,624 epoch 3 - iter 50/100 - loss 0.78730520 - samples/sec: 991.17 - lr: 0.100000
2023-04-06 05:01:14,931 epoch 3 - iter 60/100 - loss 0.77427673 - samples/sec: 1049.45 - lr: 0.100000
2023-04-06 05:01:15,236 epoch 3 - iter 70/100 - loss 0.76768125 - samples/sec: 1054.20 - lr: 0.100000
2023-04-06 05:01:15,519 epoch 3 - iter 80/100 - loss 0.75606934 - samples/sec: 1138.62 - lr: 0.100000
2023-04-06 05:01:15,821 epoch 3 - iter 90/100 - loss 0.75874242 - samples/sec: 1064.79 - lr: 0.100000
2023-04-06 05:01:16,109 epoch 3 - iter 100/100 - loss 0.74525913 - samples/sec: 1116.10 - lr: 0.100000
2023-04-06 05:01:16,110 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:16,110 EPOCH 3 done: loss 0.7453 - lr 0.100000
2023-04-06 05:01:16,887 Evaluating as a multi-label problem: False
2023-04-06 05:01:16,899 DEV : loss 0.614136278629303 - f1-score (micro avg)  0.7101
2023-04-06 05:01:16,906 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:16,908 saving best model
2023-04-06 05:01:18,556 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:18,835 epoch 4 - iter 10/100 - loss 0.64661913 - samples/sec: 1153.86 - lr: 0.100000
2023-04-06 05:01:19,137 epoch 4 - iter 20/100 - loss 0.62497328 - samples/sec: 1065.76 - lr: 0.100000
2023-04-06 05:01:19,419 epoch 4 - iter 30/100 - loss 0.63771202 - samples/sec: 1143.26 - lr: 0.100000
2023-04-06 05:01:19,759 epoch 4 - iter 40/100 - loss 0.64536114 - samples/sec: 944.68 - lr: 0.100000
2023-04-06 05:01:20,029 epoch 4 - iter 50/100 - loss 0.65670237 - samples/sec: 1189.03 - lr: 0.100000
2023-04-06 05:01:20,327 epoch 4 - iter 60/100 - loss 0.65096773 - samples/sec: 1079.77 - lr: 0.100000
2023-04-06 05:01:20,611 epoch 4 - iter 70/100 - loss 0.64386307 - samples/sec: 1132.05 - lr: 0.100000
2023-04-06 05:01:20,903 epoch 4 - iter 80/100 - loss 0.64342225 - samples/sec: 1102.42 - lr: 0.100000
2023-04-06 05:01:21,199 epoch 4 - iter 90/100 - loss 0.64639085 - samples/sec: 1088.24 - lr: 0.100000
2023-04-06 05:01:21,486 epoch 4 - iter 100/100 - loss 0.64023060 - samples/sec: 1119.16 - lr: 0.100000
2023-04-06 05:01:21,487 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:21,487 EPOCH 4 done: loss 0.6402 - lr 0.100000
2023-04-06 05:01:22,479 Evaluating as a multi-label problem: False
2023-04-06 05:01:22,490 DEV : loss 0.5573540925979614 - f1-score (micro avg)  0.7454
2023-04-06 05:01:22,497 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:22,498 saving best model
2023-04-06 05:01:24,161 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:24,456 epoch 5 - iter 10/100 - loss 0.61543932 - samples/sec: 1093.46 - lr: 0.100000
2023-04-06 05:01:24,754 epoch 5 - iter 20/100 - loss 0.58400124 - samples/sec: 1079.67 - lr: 0.100000
2023-04-06 05:01:25,064 epoch 5 - iter 30/100 - loss 0.56852493 - samples/sec: 1038.59 - lr: 0.100000
2023-04-06 05:01:25,358 epoch 5 - iter 40/100 - loss 0.57995167 - samples/sec: 1094.36 - lr: 0.100000
2023-04-06 05:01:25,683 epoch 5 - iter 50/100 - loss 0.57421334 - samples/sec: 987.87 - lr: 0.100000
2023-04-06 05:01:25,987 epoch 5 - iter 60/100 - loss 0.56522019 - samples/sec: 1059.99 - lr: 0.100000
2023-04-06 05:01:26,284 epoch 5 - iter 70/100 - loss 0.56915244 - samples/sec: 1082.58 - lr: 0.100000
2023-04-06 05:01:26,587 epoch 5 - iter 80/100 - loss 0.56741243 - samples/sec: 1060.07 - lr: 0.100000
2023-04-06 05:01:26,873 epoch 5 - iter 90/100 - loss 0.56403810 - samples/sec: 1122.34 - lr: 0.100000
2023-04-06 05:01:27,162 epoch 5 - iter 100/100 - loss 0.56619930 - samples/sec: 1116.38 - lr: 0.100000
2023-04-06 05:01:27,163 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:27,163 EPOCH 5 done: loss 0.5662 - lr 0.100000
2023-04-06 05:01:27,972 Evaluating as a multi-label problem: False
2023-04-06 05:01:27,984 DEV : loss 0.4954551160335541 - f1-score (micro avg)  0.7711
2023-04-06 05:01:27,992 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:27,994 saving best model
2023-04-06 05:01:29,618 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:29,920 epoch 6 - iter 10/100 - loss 0.51276362 - samples/sec: 1067.10 - lr: 0.100000
2023-04-06 05:01:30,220 epoch 6 - iter 20/100 - loss 0.51676351 - samples/sec: 1074.30 - lr: 0.100000
2023-04-06 05:01:30,528 epoch 6 - iter 30/100 - loss 0.51920724 - samples/sec: 1043.78 - lr: 0.100000
2023-04-06 05:01:30,844 epoch 6 - iter 40/100 - loss 0.53617170 - samples/sec: 1016.64 - lr: 0.100000
2023-04-06 05:01:31,157 epoch 6 - iter 50/100 - loss 0.52303169 - samples/sec: 1029.79 - lr: 0.100000
2023-04-06 05:01:31,472 epoch 6 - iter 60/100 - loss 0.52088512 - samples/sec: 1019.45 - lr: 0.100000
2023-04-06 05:01:31,875 epoch 6 - iter 70/100 - loss 0.51524863 - samples/sec: 797.62 - lr: 0.100000
2023-04-06 05:01:32,197 epoch 6 - iter 80/100 - loss 0.52052504 - samples/sec: 999.15 - lr: 0.100000
2023-04-06 05:01:32,524 epoch 6 - iter 90/100 - loss 0.51383911 - samples/sec: 984.59 - lr: 0.100000
2023-04-06 05:01:32,835 epoch 6 - iter 100/100 - loss 0.50979660 - samples/sec: 1039.46 - lr: 0.100000
2023-04-06 05:01:32,836 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:32,836 EPOCH 6 done: loss 0.5098 - lr 0.100000
2023-04-06 05:01:33,785 Evaluating as a multi-label problem: False
2023-04-06 05:01:33,799 DEV : loss 0.45735692977905273 - f1-score (micro avg)  0.7692
2023-04-06 05:01:33,807 BAD EPOCHS (no improvement): 1
2023-04-06 05:01:33,812 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:34,146 epoch 7 - iter 10/100 - loss 0.48405916 - samples/sec: 964.88 - lr: 0.100000
2023-04-06 05:01:34,473 epoch 7 - iter 20/100 - loss 0.46699604 - samples/sec: 986.48 - lr: 0.100000
2023-04-06 05:01:34,807 epoch 7 - iter 30/100 - loss 0.47639370 - samples/sec: 961.54 - lr: 0.100000
2023-04-06 05:01:35,134 epoch 7 - iter 40/100 - loss 0.48267184 - samples/sec: 983.20 - lr: 0.100000
2023-04-06 05:01:35,468 epoch 7 - iter 50/100 - loss 0.47247635 - samples/sec: 962.07 - lr: 0.100000
2023-04-06 05:01:35,772 epoch 7 - iter 60/100 - loss 0.47543941 - samples/sec: 1061.04 - lr: 0.100000
2023-04-06 05:01:36,101 epoch 7 - iter 70/100 - loss 0.47814133 - samples/sec: 977.64 - lr: 0.100000
2023-04-06 05:01:36,440 epoch 7 - iter 80/100 - loss 0.47698574 - samples/sec: 948.03 - lr: 0.100000
2023-04-06 05:01:36,747 epoch 7 - iter 90/100 - loss 0.47987035 - samples/sec: 1047.95 - lr: 0.100000
2023-04-06 05:01:37,066 epoch 7 - iter 100/100 - loss 0.47570336 - samples/sec: 1008.92 - lr: 0.100000
2023-04-06 05:01:37,067 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:37,070 EPOCH 7 done: loss 0.4757 - lr 0.100000
2023-04-06 05:01:37,941 Evaluating as a multi-label problem: False
2023-04-06 05:01:37,952 DEV : loss 0.44222691655158997 - f1-score (micro avg)  0.7888
2023-04-06 05:01:37,960 BAD EPOCHS (no improvement): 0
2023-04-06 05:01:37,961 saving best model
2023-04-06 05:01:40,394 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:40,854 epoch 8 - iter 10/100 - loss 0.45383867 - samples/sec: 700.65 - lr: 0.100000
2023-04-06 05:01:41,173 epoch 8 - iter 20/100 - loss 0.43853387 - samples/sec: 1008.63 - lr: 0.100000
2023-04-06 05:01:41,480 epoch 8 - iter 30/100 - loss 0.44842076 - samples/sec: 1045.92 - lr: 0.100000
2023-04-06 05:01:41,815 epoch 8 - iter 40/100 - loss 0.44778312 - samples/sec: 962.63 - lr: 0.100000
2023-04-06 05:01:42,123 epoch 8 - iter 50/100 - loss 0.45261274 - samples/sec: 1044.30 - lr: 0.100000
2023-04-06 05:01:42,467 epoch 8 - iter 60/100 - loss 0.45202269 - samples/sec: 932.97 - lr: 0.100000
2023-04-06 05:01:42,766 epoch 8 - iter 70/100 - loss 0.44615702 - samples/sec: 1078.30 - lr: 0.100000
2023-04-06 05:01:43,090 epoch 8 - iter 80/100 - loss 0.44471005 - samples/sec: 990.40 - lr: 0.100000
2023-04-06 05:01:43,390 epoch 8 - iter 90/100 - loss 0.44290559 - samples/sec: 1074.92 - lr: 0.100000
2023-04-06 05:01:43,716 epoch 8 - iter 100/100 - loss 0.44319155 - samples/sec: 984.69 - lr: 0.100000
2023-04-06 05:01:43,717 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:43,720 EPOCH 8 done: loss 0.4432 - lr 0.100000
2023-04-06 05:01:44,604 Evaluating as a multi-label problem: False
2023-04-06 05:01:44,615 DEV : loss 0.4376998245716095 - f1-score (micro avg)  0.7692
2023-04-06 05:01:44,623 BAD EPOCHS (no improvement): 1
2023-04-06 05:01:44,625 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:44,962 epoch 9 - iter 10/100 - loss 0.38774550 - samples/sec: 954.84 - lr: 0.100000
2023-04-06 05:01:45,286 epoch 9 - iter 20/100 - loss 0.41776223 - samples/sec: 991.11 - lr: 0.100000
2023-04-06 05:01:45,599 epoch 9 - iter 30/100 - loss 0.42511250 - samples/sec: 1028.88 - lr: 0.100000
2023-04-06 05:01:45,945 epoch 9 - iter 40/100 - loss 0.42112254 - samples/sec: 930.71 - lr: 0.100000
2023-04-06 05:01:46,274 epoch 9 - iter 50/100 - loss 0.42444511 - samples/sec: 976.78 - lr: 0.100000
2023-04-06 05:01:46,603 epoch 9 - iter 60/100 - loss 0.42389968 - samples/sec: 977.72 - lr: 0.100000
2023-04-06 05:01:46,926 epoch 9 - iter 70/100 - loss 0.41802363 - samples/sec: 996.06 - lr: 0.100000
2023-04-06 05:01:47,281 epoch 9 - iter 80/100 - loss 0.41442777 - samples/sec: 906.83 - lr: 0.100000
2023-04-06 05:01:47,611 epoch 9 - iter 90/100 - loss 0.41460733 - samples/sec: 975.57 - lr: 0.100000
2023-04-06 05:01:48,003 epoch 9 - iter 100/100 - loss 0.41394752 - samples/sec: 820.27 - lr: 0.100000
2023-04-06 05:01:48,005 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:48,011 EPOCH 9 done: loss 0.4139 - lr 0.100000
2023-04-06 05:01:48,916 Evaluating as a multi-label problem: False
2023-04-06 05:01:48,928 DEV : loss 0.4502558410167694 - f1-score (micro avg)  0.7756
2023-04-06 05:01:48,936 BAD EPOCHS (no improvement): 2
2023-04-06 05:01:48,940 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:49,272 epoch 10 - iter 10/100 - loss 0.37656011 - samples/sec: 980.38 - lr: 0.100000
2023-04-06 05:01:49,616 epoch 10 - iter 20/100 - loss 0.39638115 - samples/sec: 936.73 - lr: 0.100000
2023-04-06 05:01:49,952 epoch 10 - iter 30/100 - loss 0.39364339 - samples/sec: 956.19 - lr: 0.100000
2023-04-06 05:01:50,279 epoch 10 - iter 40/100 - loss 0.39287102 - samples/sec: 984.94 - lr: 0.100000
2023-04-06 05:01:50,603 epoch 10 - iter 50/100 - loss 0.39715304 - samples/sec: 992.09 - lr: 0.100000
2023-04-06 05:01:50,938 epoch 10 - iter 60/100 - loss 0.38995911 - samples/sec: 961.94 - lr: 0.100000
2023-04-06 05:01:51,244 epoch 10 - iter 70/100 - loss 0.39104831 - samples/sec: 1050.41 - lr: 0.100000
2023-04-06 05:01:51,569 epoch 10 - iter 80/100 - loss 0.39384103 - samples/sec: 988.09 - lr: 0.100000
2023-04-06 05:01:51,891 epoch 10 - iter 90/100 - loss 0.39865212 - samples/sec: 1000.92 - lr: 0.100000
2023-04-06 05:01:52,221 epoch 10 - iter 100/100 - loss 0.40034652 - samples/sec: 975.07 - lr: 0.100000
2023-04-06 05:01:52,222 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:52,222 EPOCH 10 done: loss 0.4003 - lr 0.100000
2023-04-06 05:01:53,082 Evaluating as a multi-label problem: False
2023-04-06 05:01:53,094 DEV : loss 0.4299003481864929 - f1-score (micro avg)  0.7812
2023-04-06 05:01:53,102 BAD EPOCHS (no improvement): 3
2023-04-06 05:01:58,853 ----------------------------------------------------------------------------------------------------
2023-04-06 05:01:58,855 loading file db/kgc_models/flair-spec-cons/trained_model/best-model.pt
2023-04-06 05:02:08,102 SequenceTagger predicts: Dictionary with 23 tags: O, S-Item, B-Item, E-Item, I-Item, S-Activity, B-Activity, E-Activity, I-Activity, S-Observation, B-Observation, E-Observation, I-Observation, S-Consumable, B-Consumable, E-Consumable, I-Consumable, S-Specifier, B-Specifier, E-Specifier, I-Specifier, <START>, <STOP>
2023-04-06 05:02:09,735 Evaluating as a multi-label problem: False
2023-04-06 05:02:09,746 0.7132	0.7412	0.7269	0.5798
2023-04-06 05:02:09,747 
Results:
- F-score (micro) 0.7269
- F-score (macro) 0.75
- Accuracy 0.5798

By class:
              precision    recall  f1-score   support

        Item     0.6489    0.7064    0.6764       361
    Activity     0.8324    0.8556    0.8438       180
 Observation     0.7108    0.6860    0.6982       172
  Consumable     0.7907    0.7727    0.7816        44
   Specifier     0.7500    0.7500    0.7500         8

   micro avg     0.7132    0.7412    0.7269       765
   macro avg     0.7466    0.7541    0.7500       765
weighted avg     0.7152    0.7412    0.7275       765

2023-04-06 05:02:09,747 ----------------------------------------------------------------------------------------------------