Commit
·
ac7834d
1
Parent(s):
96966e4
Update README.md
Browse files
README.md
CHANGED
@@ -49,7 +49,7 @@ Using the model in fp16 with the text generation pipeline, here is what you can
|
|
49 |
from transformers import pipeline
|
50 |
import torch
|
51 |
|
52 |
-
generator = pipeline(model="nlpcloud/instruct-gpt-j", torch_dtype=torch.float16, device=0)
|
53 |
|
54 |
prompt = "Correct spelling and grammar from the following text.\nI do not wan to go\n"
|
55 |
|
@@ -62,8 +62,8 @@ You can also use the `generate()` function. Here is what you can do:
|
|
62 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
63 |
import torch
|
64 |
|
65 |
-
tokenizer = AutoTokenizer.from_pretrained('nlpcloud/instruct-gpt-j')
|
66 |
-
generator = AutoModelForCausalLM.from_pretrained("nlpcloud/instruct-gpt-j",torch_dtype=torch.float16).cuda()
|
67 |
|
68 |
prompt = "Correct spelling and grammar from the following text.\nI do not wan to go\n"
|
69 |
|
|
|
49 |
from transformers import pipeline
|
50 |
import torch
|
51 |
|
52 |
+
generator = pipeline(model="nlpcloud/instruct-gpt-j-fp16", torch_dtype=torch.float16, device=0)
|
53 |
|
54 |
prompt = "Correct spelling and grammar from the following text.\nI do not wan to go\n"
|
55 |
|
|
|
62 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
63 |
import torch
|
64 |
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained('nlpcloud/instruct-gpt-j-fp16')
|
66 |
+
generator = AutoModelForCausalLM.from_pretrained("nlpcloud/instruct-gpt-j-fp16",torch_dtype=torch.float16).cuda()
|
67 |
|
68 |
prompt = "Correct spelling and grammar from the following text.\nI do not wan to go\n"
|
69 |
|