ekurtic commited on
Commit
c993b50
·
verified ·
1 Parent(s): fb9549f

Add README

Browse files
Files changed (1) hide show
  1. README.md +170 -0
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - deepseek
7
+ - fp8
8
+ - vllm
9
+ base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-70B
10
+ library_name: transformers
11
+ ---
12
+
13
+ # DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic
14
+
15
+ ## Model Overview
16
+ - **Model Architecture:** DeepSeek-R1-Distill-Llama-70B
17
+ - **Input:** Text
18
+ - **Output:** Text
19
+ - **Model Optimizations:**
20
+ - **Weight quantization:** FP8
21
+ - **Activation quantization:** FP8
22
+ - **Release Date:** 3/1/2025
23
+ - **Version:** 1.0
24
+ - **Model Developers:** Neural Magic
25
+
26
+ Quantized version of [DeepSeek-R1-Distill-Llama-70B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B).
27
+ It achieves an average score of 76.52 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 76.49.
28
+
29
+ ### Model Optimizations
30
+
31
+ This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM.
32
+ This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
33
+
34
+ ## Deployment
35
+
36
+ ### Use with vLLM
37
+
38
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer
42
+ from vllm import LLM, SamplingParams
43
+
44
+ max_model_len, tp_size = 4096, 1
45
+ model_name = "nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic"
46
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
47
+ llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
48
+ sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
49
+
50
+ messages_list = [
51
+ [{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
52
+ ]
53
+
54
+ prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
55
+
56
+ outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
57
+
58
+ generated_text = [output.outputs[0].text for output in outputs]
59
+ print(generated_text)
60
+ ```
61
+
62
+ vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
63
+
64
+ ## Creation
65
+
66
+ This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
67
+
68
+
69
+ ```python
70
+ import argparse
71
+ from transformers import AutoModelForCausalLM, AutoTokenizer
72
+ from llmcompressor.modifiers.quantization import QuantizationModifier
73
+ from llmcompressor.transformers import oneshot
74
+ import os
75
+
76
+ def main():
77
+ parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
78
+ parser.add_argument('--model_id', type=str, required=True,
79
+ help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
80
+ parser.add_argument('--save_path', type=str, default='.',
81
+ help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
82
+ args = parser.parse_args()
83
+
84
+ # Load model
85
+ model = AutoModelForCausalLM.from_pretrained(
86
+ args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
87
+ )
88
+ tokenizer = AutoTokenizer.from_pretrained(args.model_id)
89
+
90
+ # Configure the quantization algorithm and scheme
91
+ recipe = QuantizationModifier(
92
+ targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
93
+ )
94
+
95
+ # Apply quantization
96
+ oneshot(model=model, recipe=recipe)
97
+
98
+ save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
99
+ os.makedirs(save_path, exist_ok=True)
100
+
101
+ # Save to disk in compressed-tensors format
102
+ model.save_pretrained(save_path)
103
+ tokenizer.save_pretrained(save_path)
104
+ print(f"Model and tokenizer saved to: {save_path}")
105
+
106
+ if __name__ == "__main__":
107
+ main()
108
+ ```
109
+
110
+ ## Evaluation
111
+
112
+ The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands:
113
+
114
+ OpenLLM Leaderboard V1:
115
+ ```
116
+ lm_eval \
117
+ --model vllm \
118
+ --model_args pretrained="nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
119
+ --tasks openllm \
120
+ --write_out \
121
+ --batch_size auto \
122
+ --output_path output_dir \
123
+ --show_config
124
+ ```
125
+
126
+ OpenLLM Leaderboard V2:
127
+ ```
128
+ lm_eval \
129
+ --model vllm \
130
+ --model_args pretrained="nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=2,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
131
+ --apply_chat_template \
132
+ --fewshot_as_multiturn \
133
+ --tasks leaderboard \
134
+ --write_out \
135
+ --batch_size auto \
136
+ --output_path output_dir \
137
+ --show_config
138
+
139
+ ```
140
+
141
+ ### Accuracy
142
+
143
+ #### OpenLLM Leaderboard V1 evaluation scores
144
+
145
+ | Metric | deepseek-ai/DeepSeek-R1-Distill-Llama-70B | nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic |
146
+ |-----------------------------------------|:---------------------------------:|:-------------------------------------------:|
147
+ | ARC-Challenge (Acc-Norm, 25-shot) | 66.38 | 66.38 |
148
+ | GSM8K (Strict-Match, 5-shot) | 92.87 | 93.25 |
149
+ | HellaSwag (Acc-Norm, 10-shot) | 85.41 | 85.40 |
150
+ | MMLU (Acc, 5-shot) | 79.02 | 78.84 |
151
+ | TruthfulQA (MC2, 0-shot) | 57.24 | 57.54 |
152
+ | Winogrande (Acc, 5-shot) | 78.06 | 77.74 |
153
+ | **Average Score** | **76.49** | **76.52** |
154
+ | **Recovery (%)** | **100.00** | **100.03** |
155
+
156
+ #### OpenLLM Leaderboard V2 evaluation scores
157
+
158
+
159
+ | Metric | deepseek-ai/DeepSeek-R1-Distill-Llama-70B | nm-testing/DeepSeek-R1-Distill-Llama-70B-FP8-Dynamic |
160
+ |---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:|
161
+ | IFEval (Inst-and-Prompt Level Strict Acc, 0-shot) | 43.51 | 42.47 |
162
+ | BBH (Acc-Norm, 3-shot) | 35.30 | 33.66 |
163
+ | MMLU-Pro (Acc, 5-shot) | 41.35 | 41.05 |
164
+ | **Average Score** | **40.05** | **39.06** |
165
+ | **Recovery (%)** | **100.00** | **97.53** |
166
+ | Math-Hard (Exact-Match, 4-shot) | 5.55 | 9.03 |
167
+ | GPQA (Acc-Norm, 0-shot) | 1.64 | 1.58 |
168
+ | MUSR (Acc-Norm, 0-shot) | 13.28 | 13.80 |
169
+
170
+ Results on Math-Hard, GPQA, and MUSR are not considred for accuracy recovery calculation because the unquantized model has close to random prediction accuracy which doesn't provide a reliable baseline for recovery calculation.