Pixtral-Large-Instruct-2411-hf-quantized.w8a8
Model Overview
- Model Architecture: neuralmagic/Pixtral-Large-Instruct-2411-hf
- Input: Vision-Text
- Output: Text
- Model Optimizations:
- Weight quantization: INT8
- Activation quantization: INT8
- Release Date: 2/24/2025
- Version: 1.0
- Model Developers: Neural Magic
Quantized version of neuralmagic/Pixtral-Large-Instruct-2411-hf.
Model Optimizations
This model was obtained by quantizing the weights of neuralmagic/Pixtral-Large-Instruct-2411-hf to INT8 data type, ready for inference with vLLM >= 0.5.2.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w8a8",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.
Model Creation Code
import requests
import torch
from PIL import Image
from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import TraceableLlavaForConditionalGeneration
# Load model.
model_id = "neuralmagic/Pixtral-Large-Instruct-2411-hf"
model = TraceableLlavaForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Oneshot arguments
DATASET_ID = "flickr30k"
DATASET_SPLIT = {"calibration": "test[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
assert len(batch) == 1
return {
"input_ids": torch.LongTensor(batch[0]["input_ids"]),
"attention_mask": torch.tensor(batch[0]["attention_mask"]),
"pixel_values": torch.tensor(batch[0]["pixel_values"]),
}
# Recipe
recipe = [
GPTQModifier(
targets="Linear",
scheme="W8A8",
sequential_targets=["MistralDecoderLayer"],
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
),
]
SAVE_DIR==f"{model_id.split('/')[1]}-quantized.w8a8"
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
dataset=DATASET_ID,
splits=DATASET_SPLIT,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True,
data_collator=data_collator,
output_dir=SAVE_DIR
)
Evaluation
The model was evaluated using mistral-evals for vision-related tasks and using lm_evaluation_harness for select text-based benchmarks. The evaluations were conducted using the following commands:
Evaluation Commands
Vision Tasks
- vqav2
- docvqa
- mathvista
- mmmu
- chartqa
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7
python -m eval.run eval_vllm \
--model_name neuralmagic/pixtral-12b-quantized.w8a8 \
--url http://0.0.0.0:8000 \
--output_dir ~/tmp \
--eval_name <vision_task_name>
Text-based Tasks
MMLU
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks mmlu \
--num_fewshot 5 \
--batch_size auto \
--output_path output_dir
MGSM
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \
--tasks mgsm_cot_native \
--num_fewshot 0 \
--batch_size auto \
--output_path output_dir
Accuracy
Category | Metric | neuralmagic/Pixtral-Large-Instruct-2411-hf | neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w8a8 | Recovery (%) |
---|---|---|---|---|
Vision | MMMU (val, CoT) explicit_prompt_relaxed_correctness |
63.56 | 63.89 | 100.52% |
VQAv2 (val) vqa_match |
79.03 | 79.12 | 100.11% | |
DocVQA (val) anls |
89.55 | 89.80 | 100.28% | |
ChartQA (test, CoT) anywhere_in_answer_relaxed_correctness |
82.24 | 80.44 | 97.81% | |
Mathvista (testmini, CoT) explicit_prompt_relaxed_correctness |
67.3 | 66.50 | 98.81% | |
Average Score | 76.34 | 75.95 | 99.49% | |
Text | MGSM (CoT) | 76.05 | 74.76 | 98.30% |
MMLU (5-shot) | 82.8 | 82.9 | 100.12% |
Inference Performance
This model achieves up to 1.87x speedup in single-stream deployment and up to 1.69x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.7.2, and GuideLLM.
Benchmarking Command
``` guidellm --model neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=,generated_tokens=,images=,width=,height= --max seconds 120 --backend aiohttp_server ```Single-stream performance (measured with vLLM version 0.7.2)
Document Visual Question Answering 1680W x 2240H 64/128 |
Visual Reasoning 640W x 480H 128/128 |
Image Captioning 480W x 360H 0/128 |
|||||||
---|---|---|---|---|---|---|---|---|---|
Hardware | Number of GPUs | Model | Average Cost Reduction | Latency (s) | Queries Per Dollar | Latency (s) | Queries Per Dollar | Latency (s) | Queries Per Dollar |
A100 | 4 | neuralmagic/Pixtral-Large-Instruct-2411-hf | 7.5 | 67 | 6.5 | 77 | 6.4 | 79 | |
2 | neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w8a8 | 1.86 | 8.1 | 124 | 7.1 | 142 | 6.8 | 148 | |
2 | neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w4a16 | 2.52 | 6.9 | 147 | 5.1 | 199 | 4.5 | 221 | |
H100 | 4 | neuralmagic/Pixtral-Large-Instruct-2411-hf | 4.4 | 67 | 3.9 | 74 | 3.7 | 79 | |
2 | neuralmagic/Pixtral-Large-Instruct-2411-hf-FP8-Dynamic | 1.82 | 4.7 | 120 | 4.1 | 137 | 3.9 | 145 | |
2 | neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w4a16 | 1.87 | 4.7 | 120 | 3.9 | 144 | 3.8 | 149 |
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).
Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
<Document Visual Question Answering 1680W x 2240H 64/128 |
Visual Reasoning 640W x 480H 128/128 |
Image Captioning 480W x 360H 0/128 |
||||||
---|---|---|---|---|---|---|---|---|
Hardware | Model | Average Cost Reduction | Maximum throughput (QPS) | Queries Per Dollar | Maximum throughput (QPS) | Queries Per Dollar | Maximum throughput (QPS) | Queries Per Dollar |
A100x4 | neuralmagic/Pixtral-Large-Instruct-2411-hf | 0.4 | 222 | 0.7 | 341 | 0.8 | 399 | |
neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w8a8 | 1.70 | 1.6 | 766 | 2.2 | 1142 | 2.6 | 1348 | |
neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w4a16 | 1.48 | 1.0 | 552 | 2.0 | 1010 | 2.8 | 1360 | |
H100x4 | neuralmagic/Pixtral-Large-Instruct-2411-hf | 1.0 | 284 | 1.6 | 465 | 1.8 | 511 | |
neuralmagic/Pixtral-Large-Instruct-2411-hf-FP8-Dynamic | 1.61 | 3.4 | 905 | 5.2 | 1406 | 6.4 | 1759 | |
neuralmagic/Pixtral-Large-Instruct-2411-hf-quantized.w4a16 | 1.33 | 2.8 | 761 | 4.4 | 1228 | 5.4 | 1480 |
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
**QPS: Queries per second.
**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).
- Downloads last month
- 182