|
--- |
|
tags: |
|
- vllm |
|
- vision |
|
- fp8 |
|
license: apache-2.0 |
|
license_link: >- |
|
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: Qwen/Qwen2.5-VL-72B-Instruct |
|
library_name: transformers |
|
--- |
|
|
|
# Qwen2.5-VL-72B-Instruct-quantized-FP8-Dynamic |
|
|
|
## Model Overview |
|
- **Model Architecture:** Qwen2.5-VL-72B-Instruct |
|
- **Input:** Vision-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 2/24/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm.assets.image import ImageAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
llm = LLM( |
|
model="neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic", |
|
trust_remote_code=True, |
|
max_model_len=4096, |
|
max_num_seqs=2, |
|
) |
|
|
|
# prepare inputs |
|
question = "What is the content of this image?" |
|
inputs = { |
|
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", |
|
"multi_modal_data": { |
|
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB") |
|
}, |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoProcessor |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.transformers.tracing import ( |
|
TraceableQwen2_5_VLForConditionalGeneration, |
|
) |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
|
|
# Load model. |
|
model_id = Qwen/Qwen2.5-VL-72B-Instruct |
|
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_id, device_map="auto", torch_dtype="auto" |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
# Recipe |
|
recipe = [ |
|
QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
sequential_targets=["MistralDecoderLayer"], |
|
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"], |
|
), |
|
] |
|
|
|
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic" |
|
|
|
# Perform oneshot |
|
oneshot( |
|
model=model, |
|
recipe=recipe, |
|
trust_remote_code_model=True, |
|
output_dir=SAVE_DIR |
|
) |
|
|
|
|
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated using [mistral-evals](https://github.com/neuralmagic/mistral-evals) for vision-related tasks and using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for select text-based benchmarks. The evaluations were conducted using the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
### Vision Tasks |
|
- vqav2 |
|
- docvqa |
|
- mathvista |
|
- mmmu |
|
- chartqa |
|
|
|
``` |
|
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7 |
|
|
|
python -m eval.run eval_vllm \ |
|
--model_name neuralmagic/pixtral-12b-quantized.w8a8 \ |
|
--url http://0.0.0.0:8000 \ |
|
--output_dir ~/tmp \ |
|
--eval_name <vision_task_name> |
|
``` |
|
|
|
### Text-based Tasks |
|
#### MMLU |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
--tasks mmlu \ |
|
--num_fewshot 5 \ |
|
--batch_size auto \ |
|
--output_path output_dir |
|
|
|
``` |
|
|
|
#### MGSM |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \ |
|
--tasks mgsm_cot_native \ |
|
--num_fewshot 0 \ |
|
--batch_size auto \ |
|
--output_path output_dir |
|
|
|
``` |
|
</details> |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>Qwen/Qwen2.5-VL-72B-Instruct</th> |
|
<th>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="6"><b>Vision</b></td> |
|
<td>MMMU (val, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> |
|
<td>64.33</td> |
|
<td>66.88</td> |
|
<td>103.96%</td> |
|
</tr> |
|
<tr> |
|
<td>VQAv2 (val)<br><i>vqa_match</i></td> |
|
<td>81.94</td> |
|
<td>81.94</td> |
|
<td>100.00%</td> |
|
</tr> |
|
<tr> |
|
<td>DocVQA (val)<br><i>anls</i></td> |
|
<td>94.71</td> |
|
<td>94.64</td> |
|
<td>99.93%</td> |
|
</tr> |
|
<tr> |
|
<td>ChartQA (test, CoT)<br><i>anywhere_in_answer_relaxed_correctness</i></td> |
|
<td>88.96</td> |
|
<td>89.04</td> |
|
<td>100.09%</td> |
|
</tr> |
|
<tr> |
|
<td>Mathvista (testmini, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> |
|
<td>78.18</td> |
|
<td>77.78</td> |
|
<td>99.49%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>81.62</b></td> |
|
<td><b>81.86</b></td> |
|
<td><b>100.29%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2"><b>Text</b></td> |
|
<td>MGSM (CoT)</td> |
|
<td>75.45</td> |
|
<td>49.65</td> |
|
<td>65.81%</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (5-shot)</td> |
|
<td>86.16</td> |
|
<td>86.12</td> |
|
<td>99.95%</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
## Inference Performance |
|
|
|
|
|
This model achieves up to 1.79x speedup in single-stream deployment and up to 1.84x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. |
|
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm). |
|
|
|
<details> |
|
<summary>Benchmarking Command</summary> |
|
``` |
|
guidellm --model neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server |
|
``` |
|
|
|
</details> |
|
|
|
|
|
### Single-stream performance (measured with vLLM version 0.7.2) |
|
|
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> |
|
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> |
|
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Number of GPUs</th> |
|
<th>Model</th> |
|
<th>Average Cost Reduction</th> |
|
<th>Latency (s)</th> |
|
<th>Queries Per Dollar</th> |
|
<th>Latency (s)th> |
|
<th>Queries Per Dollar</th> |
|
<th>Latency (s)</th> |
|
<th>Queries Per Dollar</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<th rowspan="3" valign="top">A100</td> |
|
<td>4</td> |
|
<td>Qwen/Qwen2.5-VL-72B-Instruct</td> |
|
<td></td> |
|
<td>6.4</td> |
|
<td>78</td> |
|
<td>4.5</td> |
|
<td>111</td> |
|
<td>4.4</td> |
|
<td>113</td> |
|
</tr> |
|
<tr> |
|
<td>2</td> |
|
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td> |
|
<td>1.85</td> |
|
<td>7.0</td> |
|
<td>143</td> |
|
<td>4.9</td> |
|
<td>205</td> |
|
<td>4.8</td> |
|
<td>211</td> |
|
</tr> |
|
<tr> |
|
<td>1</td> |
|
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td> |
|
<td>3.33</td> |
|
<td>9.4</td> |
|
<td>213</td> |
|
<td>5.1</td> |
|
<td>396</td> |
|
<td>4.8</td> |
|
<td>420</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100</td> |
|
<td>4</td> |
|
<td>Qwen/Qwen2.5-VL-72B-Instruct</td> |
|
<td></td> |
|
<td>4.3</td> |
|
<td>68</td> |
|
<td>3.0</td> |
|
<td>97</td> |
|
<td>2.9</td> |
|
<td>100</td> |
|
</tr> |
|
<tr> |
|
<td>2</td> |
|
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td> |
|
<td>1.79</td> |
|
<td>4.6</td> |
|
<td>122</td> |
|
<td>3.3</td> |
|
<td>173</td> |
|
<td>3.2</td> |
|
<td>177</td> |
|
</tr> |
|
<tr> |
|
<td>1</td> |
|
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td> |
|
<td>5.66</td> |
|
<td>4.3</td> |
|
<td>252</td> |
|
<td>4.3</td> |
|
<td>252</td> |
|
<td>1.0</td> |
|
<td>1065</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens |
|
|
|
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |
|
|
|
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2) |
|
|
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> |
|
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> |
|
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Model</th> |
|
<th>Average Cost Reduction</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>Queries Per Dollar</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>Queries Per Dollar</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>Queries Per Dollar</th> |
|
</tr> |
|
</thead> |
|
<tbody style="text-align: center"> |
|
<tr> |
|
<th rowspan="3" valign="top">A100x4</th> |
|
<td>Qwen/Qwen2.5-VL-72B-Instruct</td> |
|
<td></td> |
|
<td>0.4</td> |
|
<td>180</td> |
|
<td>1.1</td> |
|
<td>539</td> |
|
<td>1.2</td> |
|
<td>595</td> |
|
</tr> |
|
<tr> |
|
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td> |
|
<td>1.80</td> |
|
<td>1.2</td> |
|
<td>578</td> |
|
<td>4.0</td> |
|
<td>2040</td> |
|
<td>4.6</td> |
|
<td>2266</td> |
|
</tr> |
|
<tr> |
|
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td> |
|
<td>2.75</td> |
|
<td>2.8</td> |
|
<td>1364</td> |
|
<td>12.8</td> |
|
<td>6352</td> |
|
<td>16.4</td> |
|
<td>8148</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100x4</th> |
|
<td>Qwen/Qwen2.5-VL-72B-Instruct</td> |
|
<td></td> |
|
<td>0.5</td> |
|
<td>134</td> |
|
<td>1.2</td> |
|
<td>357</td> |
|
<td>1.3</td> |
|
<td>379</td> |
|
</tr> |
|
<tr> |
|
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td> |
|
<td>1.73</td> |
|
<td>1.8</td> |
|
<td>479</td> |
|
<td>4.4</td> |
|
<td>1203</td> |
|
<td>4.8</td> |
|
<td>1296</td> |
|
</tr> |
|
<tr> |
|
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td> |
|
<td>8.27</td> |
|
<td>13.2</td> |
|
<td>3652</td> |
|
<td>13.2</td> |
|
<td>3652</td> |
|
<td>99.2</td> |
|
<td>27108</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens |
|
|
|
**QPS: Queries per second. |
|
|
|
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |