Update README.md
Browse files
README.md
CHANGED
@@ -154,25 +154,28 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
154 |
<th></th>
|
155 |
<th></th>
|
156 |
<th></th>
|
|
|
157 |
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
|
158 |
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
|
159 |
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
|
160 |
</tr>
|
161 |
<tr>
|
162 |
<th>Hardware</th>
|
|
|
163 |
<th>Model</th>
|
164 |
<th>Average Cost Reduction</th>
|
165 |
<th>Latency (s)</th>
|
166 |
-
<th>
|
167 |
<th>Latency (s)th>
|
168 |
-
<th>
|
169 |
<th>Latency (s)</th>
|
170 |
-
<th>
|
171 |
</tr>
|
172 |
</thead>
|
173 |
<tbody>
|
174 |
<tr>
|
175 |
-
<
|
|
|
176 |
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
177 |
<td></td>
|
178 |
<td>6.4</td>
|
@@ -183,7 +186,7 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
183 |
<td>113</td>
|
184 |
</tr>
|
185 |
<tr>
|
186 |
-
<td>
|
187 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
|
188 |
<td>1.85</td>
|
189 |
<td>7.0</td>
|
@@ -194,7 +197,7 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
194 |
<td>211</td>
|
195 |
</tr>
|
196 |
<tr>
|
197 |
-
<td>
|
198 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
199 |
<td>3.33</td>
|
200 |
<td>9.4</td>
|
@@ -205,7 +208,8 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
205 |
<td>420</td>
|
206 |
</tr>
|
207 |
<tr>
|
208 |
-
<
|
|
|
209 |
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
210 |
<td></td>
|
211 |
<td>4.3</td>
|
@@ -216,7 +220,7 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
216 |
<td>100</td>
|
217 |
</tr>
|
218 |
<tr>
|
219 |
-
<td>
|
220 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
|
221 |
<td>1.79</td>
|
222 |
<td>4.6</td>
|
@@ -227,7 +231,7 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
227 |
<td>177</td>
|
228 |
</tr>
|
229 |
<tr>
|
230 |
-
<td>
|
231 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
232 |
<td>5.66</td>
|
233 |
<td>4.3</td>
|
@@ -240,6 +244,9 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
240 |
</tbody>
|
241 |
</table>
|
242 |
|
|
|
|
|
|
|
243 |
|
244 |
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
|
245 |
|
@@ -258,16 +265,16 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
258 |
<th>Model</th>
|
259 |
<th>Average Cost Reduction</th>
|
260 |
<th>Maximum throughput (QPS)</th>
|
261 |
-
<th>
|
262 |
<th>Maximum throughput (QPS)</th>
|
263 |
-
<th>
|
264 |
<th>Maximum throughput (QPS)</th>
|
265 |
-
<th>
|
266 |
</tr>
|
267 |
</thead>
|
268 |
<tbody style="text-align: center">
|
269 |
<tr>
|
270 |
-
<
|
271 |
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
272 |
<td></td>
|
273 |
<td>0.4</td>
|
@@ -278,29 +285,27 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
278 |
<td>595</td>
|
279 |
</tr>
|
280 |
<tr>
|
281 |
-
<td>A100x2</td>
|
282 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
|
283 |
<td>1.80</td>
|
284 |
-
<td>
|
285 |
<td>289</td>
|
286 |
-
<td>
|
287 |
<td>1020</td>
|
288 |
-
<td>
|
289 |
<td>1133</td>
|
290 |
</tr>
|
291 |
<tr>
|
292 |
-
<td>A100x1</td>
|
293 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
294 |
<td>2.75</td>
|
295 |
-
<td>
|
296 |
<td>341</td>
|
297 |
-
<td>
|
298 |
<td>1588</td>
|
299 |
-
<td>4
|
300 |
<td>2037</td>
|
301 |
</tr>
|
302 |
<tr>
|
303 |
-
<
|
304 |
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
305 |
<td></td>
|
306 |
<td>0.5</td>
|
@@ -311,26 +316,30 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
|
|
311 |
<td>379</td>
|
312 |
</tr>
|
313 |
<tr>
|
314 |
-
<td>H100x2</td>
|
315 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
|
316 |
<td>1.73</td>
|
317 |
-
<td>
|
318 |
<td>247</td>
|
319 |
-
<td>
|
320 |
<td>621</td>
|
321 |
-
<td>
|
322 |
<td>669</td>
|
323 |
</tr>
|
324 |
<tr>
|
325 |
-
<td>H100x1</td>
|
326 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
327 |
<td>8.27</td>
|
328 |
-
<td>
|
329 |
<td>913</td>
|
330 |
-
<td>
|
331 |
<td>913</td>
|
332 |
-
<td>
|
333 |
<td>6777</td>
|
334 |
</tr>
|
335 |
</tbody>
|
336 |
-
</table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
<th></th>
|
155 |
<th></th>
|
156 |
<th></th>
|
157 |
+
<th></th>
|
158 |
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
|
159 |
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
|
160 |
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
|
161 |
</tr>
|
162 |
<tr>
|
163 |
<th>Hardware</th>
|
164 |
+
<th>Number of GPUs</th>
|
165 |
<th>Model</th>
|
166 |
<th>Average Cost Reduction</th>
|
167 |
<th>Latency (s)</th>
|
168 |
+
<th>Queries Per Dollar</th>
|
169 |
<th>Latency (s)th>
|
170 |
+
<th>Queries Per Dollar</th>
|
171 |
<th>Latency (s)</th>
|
172 |
+
<th>Queries Per Dollar</th>
|
173 |
</tr>
|
174 |
</thead>
|
175 |
<tbody>
|
176 |
<tr>
|
177 |
+
<th rowspan="3" valign="top">A100</td>
|
178 |
+
<td>4</td>
|
179 |
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
180 |
<td></td>
|
181 |
<td>6.4</td>
|
|
|
186 |
<td>113</td>
|
187 |
</tr>
|
188 |
<tr>
|
189 |
+
<td>2</td>
|
190 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
|
191 |
<td>1.85</td>
|
192 |
<td>7.0</td>
|
|
|
197 |
<td>211</td>
|
198 |
</tr>
|
199 |
<tr>
|
200 |
+
<td>1</td>
|
201 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
202 |
<td>3.33</td>
|
203 |
<td>9.4</td>
|
|
|
208 |
<td>420</td>
|
209 |
</tr>
|
210 |
<tr>
|
211 |
+
<th rowspan="3" valign="top">H100</td>
|
212 |
+
<td>4</td>
|
213 |
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
214 |
<td></td>
|
215 |
<td>4.3</td>
|
|
|
220 |
<td>100</td>
|
221 |
</tr>
|
222 |
<tr>
|
223 |
+
<td>2</td>
|
224 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
|
225 |
<td>1.79</td>
|
226 |
<td>4.6</td>
|
|
|
231 |
<td>177</td>
|
232 |
</tr>
|
233 |
<tr>
|
234 |
+
<td>1</td>
|
235 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
236 |
<td>5.66</td>
|
237 |
<td>4.3</td>
|
|
|
244 |
</tbody>
|
245 |
</table>
|
246 |
|
247 |
+
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
|
248 |
+
|
249 |
+
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
|
250 |
|
251 |
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
|
252 |
|
|
|
265 |
<th>Model</th>
|
266 |
<th>Average Cost Reduction</th>
|
267 |
<th>Maximum throughput (QPS)</th>
|
268 |
+
<th>Queries Per Dollar</th>
|
269 |
<th>Maximum throughput (QPS)</th>
|
270 |
+
<th>Queries Per Dollar</th>
|
271 |
<th>Maximum throughput (QPS)</th>
|
272 |
+
<th>Queries Per Dollar</th>
|
273 |
</tr>
|
274 |
</thead>
|
275 |
<tbody style="text-align: center">
|
276 |
<tr>
|
277 |
+
<th rowspan="3" valign="top">A100x4</th>
|
278 |
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
279 |
<td></td>
|
280 |
<td>0.4</td>
|
|
|
285 |
<td>595</td>
|
286 |
</tr>
|
287 |
<tr>
|
|
|
288 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
|
289 |
<td>1.80</td>
|
290 |
+
<td>1.2</td>
|
291 |
<td>289</td>
|
292 |
+
<td>4.0</td>
|
293 |
<td>1020</td>
|
294 |
+
<td>4.6</td>
|
295 |
<td>1133</td>
|
296 |
</tr>
|
297 |
<tr>
|
|
|
298 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
299 |
<td>2.75</td>
|
300 |
+
<td>2.8</td>
|
301 |
<td>341</td>
|
302 |
+
<td>12.8</td>
|
303 |
<td>1588</td>
|
304 |
+
<td>16.4</td>
|
305 |
<td>2037</td>
|
306 |
</tr>
|
307 |
<tr>
|
308 |
+
<th rowspan="3" valign="top">H100x4</th>
|
309 |
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
310 |
<td></td>
|
311 |
<td>0.5</td>
|
|
|
316 |
<td>379</td>
|
317 |
</tr>
|
318 |
<tr>
|
|
|
319 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
|
320 |
<td>1.73</td>
|
321 |
+
<td>1.8</td>
|
322 |
<td>247</td>
|
323 |
+
<td>4.4</td>
|
324 |
<td>621</td>
|
325 |
+
<td>4.8</td>
|
326 |
<td>669</td>
|
327 |
</tr>
|
328 |
<tr>
|
|
|
329 |
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
330 |
<td>8.27</td>
|
331 |
+
<td>13.2</td>
|
332 |
<td>913</td>
|
333 |
+
<td>13.2</td>
|
334 |
<td>913</td>
|
335 |
+
<td>99.2</td>
|
336 |
<td>6777</td>
|
337 |
</tr>
|
338 |
</tbody>
|
339 |
+
</table>
|
340 |
+
|
341 |
+
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
|
342 |
+
|
343 |
+
**QPS: Queries per second.
|
344 |
+
|
345 |
+
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
|