shubhrapandit commited on
Commit
1df50f8
·
verified ·
1 Parent(s): 4917a12

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -31
README.md CHANGED
@@ -154,25 +154,28 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
154
  <th></th>
155
  <th></th>
156
  <th></th>
 
157
  <th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
158
  <th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
159
  <th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
160
  </tr>
161
  <tr>
162
  <th>Hardware</th>
 
163
  <th>Model</th>
164
  <th>Average Cost Reduction</th>
165
  <th>Latency (s)</th>
166
- <th>QPD</th>
167
  <th>Latency (s)th>
168
- <th>QPD</th>
169
  <th>Latency (s)</th>
170
- <th>QPD</th>
171
  </tr>
172
  </thead>
173
  <tbody>
174
  <tr>
175
- <td>A100x4</td>
 
176
  <td>Qwen/Qwen2.5-VL-72B-Instruct</td>
177
  <td></td>
178
  <td>6.4</td>
@@ -183,7 +186,7 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
183
  <td>113</td>
184
  </tr>
185
  <tr>
186
- <td>A100x2</td>
187
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
188
  <td>1.85</td>
189
  <td>7.0</td>
@@ -194,7 +197,7 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
194
  <td>211</td>
195
  </tr>
196
  <tr>
197
- <td>A100x1</td>
198
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
199
  <td>3.33</td>
200
  <td>9.4</td>
@@ -205,7 +208,8 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
205
  <td>420</td>
206
  </tr>
207
  <tr>
208
- <td>H100x4</td>
 
209
  <td>Qwen/Qwen2.5-VL-72B-Instruct</td>
210
  <td></td>
211
  <td>4.3</td>
@@ -216,7 +220,7 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
216
  <td>100</td>
217
  </tr>
218
  <tr>
219
- <td>H100x2</td>
220
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
221
  <td>1.79</td>
222
  <td>4.6</td>
@@ -227,7 +231,7 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
227
  <td>177</td>
228
  </tr>
229
  <tr>
230
- <td>H100x1</td>
231
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
232
  <td>5.66</td>
233
  <td>4.3</td>
@@ -240,6 +244,9 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
240
  </tbody>
241
  </table>
242
 
 
 
 
243
 
244
  ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
245
 
@@ -258,16 +265,16 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
258
  <th>Model</th>
259
  <th>Average Cost Reduction</th>
260
  <th>Maximum throughput (QPS)</th>
261
- <th>QPD</th>
262
  <th>Maximum throughput (QPS)</th>
263
- <th>QPD</th>
264
  <th>Maximum throughput (QPS)</th>
265
- <th>QPD</th>
266
  </tr>
267
  </thead>
268
  <tbody style="text-align: center">
269
  <tr>
270
- <td>A100x4</td>
271
  <td>Qwen/Qwen2.5-VL-72B-Instruct</td>
272
  <td></td>
273
  <td>0.4</td>
@@ -278,29 +285,27 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
278
  <td>595</td>
279
  </tr>
280
  <tr>
281
- <td>A100x2</td>
282
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
283
  <td>1.80</td>
284
- <td>0.6</td>
285
  <td>289</td>
286
- <td>2.0</td>
287
  <td>1020</td>
288
- <td>2.3</td>
289
  <td>1133</td>
290
  </tr>
291
  <tr>
292
- <td>A100x1</td>
293
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
294
  <td>2.75</td>
295
- <td>0.7</td>
296
  <td>341</td>
297
- <td>3.2</td>
298
  <td>1588</td>
299
- <td>4.1</td>
300
  <td>2037</td>
301
  </tr>
302
  <tr>
303
- <td>H100x4</td>
304
  <td>Qwen/Qwen2.5-VL-72B-Instruct</td>
305
  <td></td>
306
  <td>0.5</td>
@@ -311,26 +316,30 @@ The following performance benchmarks were conducted with [vLLM](https://docs.vll
311
  <td>379</td>
312
  </tr>
313
  <tr>
314
- <td>H100x2</td>
315
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
316
  <td>1.73</td>
317
- <td>0.9</td>
318
  <td>247</td>
319
- <td>2.2</td>
320
  <td>621</td>
321
- <td>2.4</td>
322
  <td>669</td>
323
  </tr>
324
  <tr>
325
- <td>H100x1</td>
326
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
327
  <td>8.27</td>
328
- <td>3.3</td>
329
  <td>913</td>
330
- <td>3.3</td>
331
  <td>913</td>
332
- <td>24.8</td>
333
  <td>6777</td>
334
  </tr>
335
  </tbody>
336
- </table>
 
 
 
 
 
 
 
154
  <th></th>
155
  <th></th>
156
  <th></th>
157
+ <th></th>
158
  <th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
159
  <th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
160
  <th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
161
  </tr>
162
  <tr>
163
  <th>Hardware</th>
164
+ <th>Number of GPUs</th>
165
  <th>Model</th>
166
  <th>Average Cost Reduction</th>
167
  <th>Latency (s)</th>
168
+ <th>Queries Per Dollar</th>
169
  <th>Latency (s)th>
170
+ <th>Queries Per Dollar</th>
171
  <th>Latency (s)</th>
172
+ <th>Queries Per Dollar</th>
173
  </tr>
174
  </thead>
175
  <tbody>
176
  <tr>
177
+ <th rowspan="3" valign="top">A100</td>
178
+ <td>4</td>
179
  <td>Qwen/Qwen2.5-VL-72B-Instruct</td>
180
  <td></td>
181
  <td>6.4</td>
 
186
  <td>113</td>
187
  </tr>
188
  <tr>
189
+ <td>2</td>
190
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
191
  <td>1.85</td>
192
  <td>7.0</td>
 
197
  <td>211</td>
198
  </tr>
199
  <tr>
200
+ <td>1</td>
201
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
202
  <td>3.33</td>
203
  <td>9.4</td>
 
208
  <td>420</td>
209
  </tr>
210
  <tr>
211
+ <th rowspan="3" valign="top">H100</td>
212
+ <td>4</td>
213
  <td>Qwen/Qwen2.5-VL-72B-Instruct</td>
214
  <td></td>
215
  <td>4.3</td>
 
220
  <td>100</td>
221
  </tr>
222
  <tr>
223
+ <td>2</td>
224
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
225
  <td>1.79</td>
226
  <td>4.6</td>
 
231
  <td>177</td>
232
  </tr>
233
  <tr>
234
+ <td>1</td>
235
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
236
  <td>5.66</td>
237
  <td>4.3</td>
 
244
  </tbody>
245
  </table>
246
 
247
+ **Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
248
+
249
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
250
 
251
  ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
252
 
 
265
  <th>Model</th>
266
  <th>Average Cost Reduction</th>
267
  <th>Maximum throughput (QPS)</th>
268
+ <th>Queries Per Dollar</th>
269
  <th>Maximum throughput (QPS)</th>
270
+ <th>Queries Per Dollar</th>
271
  <th>Maximum throughput (QPS)</th>
272
+ <th>Queries Per Dollar</th>
273
  </tr>
274
  </thead>
275
  <tbody style="text-align: center">
276
  <tr>
277
+ <th rowspan="3" valign="top">A100x4</th>
278
  <td>Qwen/Qwen2.5-VL-72B-Instruct</td>
279
  <td></td>
280
  <td>0.4</td>
 
285
  <td>595</td>
286
  </tr>
287
  <tr>
 
288
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
289
  <td>1.80</td>
290
+ <td>1.2</td>
291
  <td>289</td>
292
+ <td>4.0</td>
293
  <td>1020</td>
294
+ <td>4.6</td>
295
  <td>1133</td>
296
  </tr>
297
  <tr>
 
298
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
299
  <td>2.75</td>
300
+ <td>2.8</td>
301
  <td>341</td>
302
+ <td>12.8</td>
303
  <td>1588</td>
304
+ <td>16.4</td>
305
  <td>2037</td>
306
  </tr>
307
  <tr>
308
+ <th rowspan="3" valign="top">H100x4</th>
309
  <td>Qwen/Qwen2.5-VL-72B-Instruct</td>
310
  <td></td>
311
  <td>0.5</td>
 
316
  <td>379</td>
317
  </tr>
318
  <tr>
 
319
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
320
  <td>1.73</td>
321
+ <td>1.8</td>
322
  <td>247</td>
323
+ <td>4.4</td>
324
  <td>621</td>
325
+ <td>4.8</td>
326
  <td>669</td>
327
  </tr>
328
  <tr>
 
329
  <td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
330
  <td>8.27</td>
331
+ <td>13.2</td>
332
  <td>913</td>
333
+ <td>13.2</td>
334
  <td>913</td>
335
+ <td>99.2</td>
336
  <td>6777</td>
337
  </tr>
338
  </tbody>
339
+ </table>
340
+
341
+ **Use case profiles: Image Size (WxH) / prompt tokens / generation tokens
342
+
343
+ **QPS: Queries per second.
344
+
345
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).