Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- vllm
|
4 |
+
- vision
|
5 |
+
- fp8
|
6 |
+
license: apache-2.0
|
7 |
+
license_link: >-
|
8 |
+
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
base_model: Qwen/Qwen2.5-VL-72B-Instruct
|
12 |
+
library_name: transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
# Qwen2.5-VL-72B-Instruct-quantized-FP8-Dynamic
|
16 |
+
|
17 |
+
## Model Overview
|
18 |
+
- **Model Architecture:** Qwen2.5-VL-72B-Instruct
|
19 |
+
- **Input:** Vision-Text
|
20 |
+
- **Output:** Text
|
21 |
+
- **Model Optimizations:**
|
22 |
+
- **Weight quantization:** FP8
|
23 |
+
- **Activation quantization:** FP8
|
24 |
+
- **Release Date:** 2/24/2025
|
25 |
+
- **Version:** 1.0
|
26 |
+
- **Model Developers:** Neural Magic
|
27 |
+
|
28 |
+
Quantized version of [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct).
|
29 |
+
|
30 |
+
### Model Optimizations
|
31 |
+
|
32 |
+
This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2.
|
33 |
+
|
34 |
+
## Deployment
|
35 |
+
|
36 |
+
### Use with vLLM
|
37 |
+
|
38 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from vllm.assets.image import ImageAsset
|
42 |
+
from vllm import LLM, SamplingParams
|
43 |
+
|
44 |
+
# prepare model
|
45 |
+
llm = LLM(
|
46 |
+
model="neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic",
|
47 |
+
trust_remote_code=True,
|
48 |
+
max_model_len=4096,
|
49 |
+
max_num_seqs=2,
|
50 |
+
)
|
51 |
+
|
52 |
+
# prepare inputs
|
53 |
+
question = "What is the content of this image?"
|
54 |
+
inputs = {
|
55 |
+
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
|
56 |
+
"multi_modal_data": {
|
57 |
+
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
58 |
+
},
|
59 |
+
}
|
60 |
+
|
61 |
+
# generate response
|
62 |
+
print("========== SAMPLE GENERATION ==============")
|
63 |
+
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
|
64 |
+
print(f"PROMPT : {outputs[0].prompt}")
|
65 |
+
print(f"RESPONSE: {outputs[0].outputs[0].text}")
|
66 |
+
print("==========================================")
|
67 |
+
```
|
68 |
+
|
69 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
70 |
+
|
71 |
+
## Creation
|
72 |
+
|
73 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
|
74 |
+
|
75 |
+
<details>
|
76 |
+
<summary>Model Creation Code</summary>
|
77 |
+
|
78 |
+
```python
|
79 |
+
import requests
|
80 |
+
import torch
|
81 |
+
from PIL import Image
|
82 |
+
from transformers import AutoProcessor
|
83 |
+
from llmcompressor.transformers import oneshot
|
84 |
+
from llmcompressor.transformers.tracing import (
|
85 |
+
TraceableQwen2_5_VLForConditionalGeneration,
|
86 |
+
)
|
87 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
88 |
+
|
89 |
+
# Load model.
|
90 |
+
model_id = Qwen/Qwen2.5-VL-72B-Instruct
|
91 |
+
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained(
|
92 |
+
model_id, device_map="auto", torch_dtype="auto"
|
93 |
+
)
|
94 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
95 |
+
|
96 |
+
# Recipe
|
97 |
+
recipe = [
|
98 |
+
QuantizationModifier(
|
99 |
+
targets="Linear",
|
100 |
+
scheme="FP8_DYNAMIC",
|
101 |
+
sequential_targets=["MistralDecoderLayer"],
|
102 |
+
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
|
103 |
+
),
|
104 |
+
]
|
105 |
+
|
106 |
+
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
|
107 |
+
|
108 |
+
# Perform oneshot
|
109 |
+
oneshot(
|
110 |
+
model=model,
|
111 |
+
recipe=recipe,
|
112 |
+
trust_remote_code_model=True,
|
113 |
+
output_dir=SAVE_DIR
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
```
|
118 |
+
</details>
|
119 |
+
|
120 |
+
## Evaluation
|
121 |
+
|
122 |
+
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
|
123 |
+
|
124 |
+
<details>
|
125 |
+
<summary>Evaluation Commands</summary>
|
126 |
+
|
127 |
+
```
|
128 |
+
```
|
129 |
+
|
130 |
+
</details>
|
131 |
+
|
132 |
+
### Accuracy
|
133 |
+
|
134 |
+
## Inference Performance
|
135 |
+
|
136 |
+
|
137 |
+
This model achieves up to xxx speedup in single-stream deployment and up to xxx speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
|
138 |
+
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
|
139 |
+
|
140 |
+
<details>
|
141 |
+
<summary>Benchmarking Command</summary>
|
142 |
+
```
|
143 |
+
guidellm --model neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server
|
144 |
+
```
|
145 |
+
|
146 |
+
</details>
|
147 |
+
|
148 |
+
|
149 |
+
### Single-stream performance (measured with vLLM version 0.7.2)
|
150 |
+
|
151 |
+
<table border="1" class="dataframe">
|
152 |
+
<thead>
|
153 |
+
<tr>
|
154 |
+
<th></th>
|
155 |
+
<th></th>
|
156 |
+
<th></th>
|
157 |
+
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
|
158 |
+
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
|
159 |
+
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
|
160 |
+
</tr>
|
161 |
+
<tr>
|
162 |
+
<th>Hardware</th>
|
163 |
+
<th>Model</th>
|
164 |
+
<th>Average Cost Reduction</th>
|
165 |
+
<th>Latency (s)</th>
|
166 |
+
<th>QPD</th>
|
167 |
+
<th>Latency (s)th>
|
168 |
+
<th>QPD</th>
|
169 |
+
<th>Latency (s)</th>
|
170 |
+
<th>QPD</th>
|
171 |
+
</tr>
|
172 |
+
</thead>
|
173 |
+
<tbody>
|
174 |
+
<tr>
|
175 |
+
<td>A100x4</td>
|
176 |
+
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
177 |
+
<td></td>
|
178 |
+
<td>6.4</td>
|
179 |
+
<td>78</td>
|
180 |
+
<td>4.5</td>
|
181 |
+
<td>111</td>
|
182 |
+
<td>4.4</td>
|
183 |
+
<td>113</td>
|
184 |
+
</tr>
|
185 |
+
<tr>
|
186 |
+
<td>A100x2</td>
|
187 |
+
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
|
188 |
+
<td>1.85</td>
|
189 |
+
<td>7.0</td>
|
190 |
+
<td>143</td>
|
191 |
+
<td>4.9</td>
|
192 |
+
<td>205</td>
|
193 |
+
<td>4.8</td>
|
194 |
+
<td>211</td>
|
195 |
+
</tr>
|
196 |
+
<tr>
|
197 |
+
<td>A100x1</td>
|
198 |
+
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
199 |
+
<td>3.33</td>
|
200 |
+
<td>9.4</td>
|
201 |
+
<td>213</td>
|
202 |
+
<td>5.1</td>
|
203 |
+
<td>396</td>
|
204 |
+
<td>4.8</td>
|
205 |
+
<td>420</td>
|
206 |
+
</tr>
|
207 |
+
<tr>
|
208 |
+
<td>H100x4</td>
|
209 |
+
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
210 |
+
<td></td>
|
211 |
+
<td>4.3</td>
|
212 |
+
<td>68</td>
|
213 |
+
<td>3.0</td>
|
214 |
+
<td>97</td>
|
215 |
+
<td>2.9</td>
|
216 |
+
<td>100</td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td>H100x2</td>
|
220 |
+
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
|
221 |
+
<td>1.79</td>
|
222 |
+
<td>4.6</td>
|
223 |
+
<td>122</td>
|
224 |
+
<td>3.3</td>
|
225 |
+
<td>173</td>
|
226 |
+
<td>3.2</td>
|
227 |
+
<td>177</td>
|
228 |
+
</tr>
|
229 |
+
<tr>
|
230 |
+
<td>H100x1</td>
|
231 |
+
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
232 |
+
<td>5.66</td>
|
233 |
+
<td>4.3</td>
|
234 |
+
<td>252</td>
|
235 |
+
<td>4.3</td>
|
236 |
+
<td>252</td>
|
237 |
+
<td>1.0</td>
|
238 |
+
<td>1065</td>
|
239 |
+
</tr>
|
240 |
+
</tbody>
|
241 |
+
</table>
|
242 |
+
|
243 |
+
|
244 |
+
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
|
245 |
+
|
246 |
+
<table border="1" class="dataframe">
|
247 |
+
<thead>
|
248 |
+
<tr>
|
249 |
+
<th></th>
|
250 |
+
<th></th>
|
251 |
+
<th></th>
|
252 |
+
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
|
253 |
+
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
|
254 |
+
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
|
255 |
+
</tr>
|
256 |
+
<tr>
|
257 |
+
<th>Hardware</th>
|
258 |
+
<th>Model</th>
|
259 |
+
<th>Average Cost Reduction</th>
|
260 |
+
<th>Maximum throughput (QPS)</th>
|
261 |
+
<th>QPD</th>
|
262 |
+
<th>Maximum throughput (QPS)</th>
|
263 |
+
<th>QPD</th>
|
264 |
+
<th>Maximum throughput (QPS)</th>
|
265 |
+
<th>QPD</th>
|
266 |
+
</tr>
|
267 |
+
</thead>
|
268 |
+
<tbody style="text-align: center">
|
269 |
+
<tr>
|
270 |
+
<td>A100x4</td>
|
271 |
+
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
272 |
+
<td></td>
|
273 |
+
<td>0.4</td>
|
274 |
+
<td>180</td>
|
275 |
+
<td>1.1</td>
|
276 |
+
<td>539</td>
|
277 |
+
<td>1.2</td>
|
278 |
+
<td>595</td>
|
279 |
+
</tr>
|
280 |
+
<tr>
|
281 |
+
<td>A100x2</td>
|
282 |
+
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w8a8</td>
|
283 |
+
<td>1.80</td>
|
284 |
+
<td>0.6</td>
|
285 |
+
<td>289</td>
|
286 |
+
<td>2.0</td>
|
287 |
+
<td>1020</td>
|
288 |
+
<td>2.3</td>
|
289 |
+
<td>1133</td>
|
290 |
+
</tr>
|
291 |
+
<tr>
|
292 |
+
<td>A100x1</td>
|
293 |
+
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
294 |
+
<td>2.75</td>
|
295 |
+
<td>0.7</td>
|
296 |
+
<td>341</td>
|
297 |
+
<td>3.2</td>
|
298 |
+
<td>1588</td>
|
299 |
+
<td>4.1</td>
|
300 |
+
<td>2037</td>
|
301 |
+
</tr>
|
302 |
+
<tr>
|
303 |
+
<td>H100x4</td>
|
304 |
+
<td>Qwen/Qwen2.5-VL-72B-Instruct</td>
|
305 |
+
<td></td>
|
306 |
+
<td>0.5</td>
|
307 |
+
<td>134</td>
|
308 |
+
<td>1.2</td>
|
309 |
+
<td>357</td>
|
310 |
+
<td>1.3</td>
|
311 |
+
<td>379</td>
|
312 |
+
</tr>
|
313 |
+
<tr>
|
314 |
+
<td>H100x2</td>
|
315 |
+
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-FP8-Dynamic</td>
|
316 |
+
<td>1.73</td>
|
317 |
+
<td>0.9</td>
|
318 |
+
<td>247</td>
|
319 |
+
<td>2.2</td>
|
320 |
+
<td>621</td>
|
321 |
+
<td>2.4</td>
|
322 |
+
<td>669</td>
|
323 |
+
</tr>
|
324 |
+
<tr>
|
325 |
+
<td>H100x1</td>
|
326 |
+
<td>neuralmagic/Qwen2.5-VL-72B-Instruct-quantized.w4a16</td>
|
327 |
+
<td>8.27</td>
|
328 |
+
<td>3.3</td>
|
329 |
+
<td>913</td>
|
330 |
+
<td>3.3</td>
|
331 |
+
<td>913</td>
|
332 |
+
<td>24.8</td>
|
333 |
+
<td>6777</td>
|
334 |
+
</tr>
|
335 |
+
</tbody>
|
336 |
+
</table>
|