--- base_model: glaiveai/glaive-coder-7b inference: false model_type: llama prompt_template: | [INST] {prompt} [/INST] quantized_by: mwitiderrick tags: - deepsparse --- # Glaive-coder-7b - DeepSparse This repo contains model files for [Glaive-coder-7b](https://huggingface.co/glaiveai/glaive-coder-7b) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration template = "[INST] {prompt} [/INST]" prompt = "Write a quick sort algorithm in Python" input_str = template.format(prompt=prompt) model = TextGeneration(model_path="hf:nm-testing/glaive-coder-7b-pruned50-quant-ds") print(model(input_str, max_new_tokens=200).generations[0].text) """ def quick_sort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 arr[:mid] = sorted(arr[:mid] ) left = arr[:mid] right = arr[mid:] quick_sort(left) quick_sort(right) left.extend(right) return left + right print(quick_sort([5, 3, 1, 4, 2])) This code will give you a sorted array. The quick_sort function sorts the first mid to mid element and the rest of the array. Then it calls the function again on the right part of the array. After that, it """ ## Prompt template ``` [INST] {prompt} [/INST] ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py glaiveai/glaive-coder-7b open_platypus --recipe recipe.yaml --save True python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --sequence_length 4096 --task text-generation --model_path obcq_deployment cp deployment/model.onnx deployment/model-orig.onnx ``` Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: ```python import os import onnx from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector input_file = "deployment/model-orig.onnx" output_file = "deployment/model.onnx" model = onnx.load(input_file, load_external_data=False) model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) onnx.save(model, output_file) print(f"Modified model saved to: {output_file}") ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)