--- base_model: mncai/mistral-7b-dpo-merge-v1.1 inference: false model_type: mistral prompt_template: | <|user|>\n {prompt} |assistant|>\n quantized_by: mwitiderrick tags: - deepsparse --- # Mistral-7b-dpo-merge-v1.1 - DeepSparse This repo contains model files for [Mistral-7b-dpo-merge-v1.1](https://huggingface.co/mncai/mistral-7b-dpo-merge-v1.1/tree/main) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration prompt = "How to make banana bread?" formatted_prompt = f"<|user|>\n{prompt}\n<|assistant|>\n" model = TextGeneration(model_path="hf:nm-testing/SOLAR-10.7B-Instruct-v1.0-pruned50-quant") print(model(formatted_prompt, max_new_tokens=200).generations[0].text) """ To make banana bread, you'll need the following ingredients: - 1 cup (250 ml) all-purpose flour - 1 cup (250 ml) granulated sugar - 1/2 cup (125 ml) butter, melted - 2 large eggs - 1 cup (250 ml) mashed ripe bananas - 1 teaspoon (5 ml) baking soda Here are the steps to make banana bread: 1. Preheat the oven to 350°F (175°C). 2. Grease a loaf pan with butter or nonstick spray. 3. In a large bowl, whisk together the flour, baking soda, and salt. 4. In another bowl, cream together the butter, sugar, and eggs. 5. Add the mashed bananas to the mixture and stir until """ ``` ## Prompt template ``` <|user|>\n {prompt} |assistant|>\n ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py mncai/mistral-7b-dpo-merge-v1.1 open_platypus --precision float16 --recipe recipe.yaml --save True python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment cp deployment/model.onnx deployment/model-orig.onnx ``` Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: ```python import os import onnx from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector input_file = "deployment/model-orig.onnx" output_file = "deployment/model.onnx" model = onnx.load(input_file, load_external_data=False) model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) onnx.save(model, output_file) print(f"Modified model saved to: {output_file}") ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)