File size: 737 Bytes
859e6d1
c186c67
9e192f4
 
b6d2ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
badd543
b6d2ff6
 
 
 
 
1b67c1b
b6d2ff6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
---
pipeline_tag: image-to-text
datasets:
- MMInstruction/M3IT
---

## Usage:
```
from transformers import BlipProcessor, BlipForConditionalGeneration
import torch
from PIL import Image

processor = BlipProcessor.from_pretrained("prasanna2003/blip-image-captioning")
if processor.tokenizer.eos_token is None:
    processor.tokenizer.eos_token = '<|eos|>'
model = BlipForConditionalGeneration.from_pretrained("prasanna2003/blip-image-captioning")

image = Image.open('file_name.jpg').convert('RGB')

prompt = """Instruction: Generate a single line caption of the Image.
output: """

inputs = processor(image, prompt, return_tensors="pt")

output = model.generate(**inputs, max_length=100)
print(processor.tokenizer.decode(output[0]))

```