|
import json |
|
|
|
import tokenizers |
|
import torch |
|
import transformers |
|
|
|
|
|
def shrink_vocab(tokenizer, new_vocab_size): |
|
tokenizer_json = json.loads(tokenizer._tokenizer.to_str()) |
|
vocab = tokenizer_json["model"]["vocab"] |
|
if tokenizer_json["model"]["type"] == "BPE": |
|
new_vocab = { token: i for token, i in vocab.items() if i < new_vocab_size } |
|
merges = tokenizer_json["model"]["merges"] |
|
new_merges = [] |
|
for i in range(len(merges)): |
|
if len( merges[i].split()) == 2: |
|
a, b = merges[i].split() |
|
else: |
|
print('skip') |
|
continue |
|
new_token = "".join((a, b)) |
|
if a in new_vocab and b in new_vocab and new_token in new_vocab: |
|
new_merges.append(merges[i]) |
|
tokenizer_json["model"]["merges"] = new_merges |
|
elif tokenizer_json["model"]["type"] == "Unigram": |
|
new_vocab = vocab[:new_vocab_size] |
|
elif tokenizer_json["model"]["type"] == "WordPiece" or tokenizer_json["model"]["type"] == "WordLevel": |
|
new_vocab = { token: i for token, i in vocab.items() if i < new_vocab_size } |
|
else: |
|
raise ValueError(f"don't know how to handle {tokenizer_json['model']['type']}") |
|
tokenizer_json["model"]["vocab"] = new_vocab |
|
tokenizer._tokenizer = tokenizers.Tokenizer.from_str(json.dumps(tokenizer_json)) |
|
|
|
|
|
def main(): |
|
tokenizer = transformers.AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") |
|
shrink_vocab(tokenizer, new_vocab_size=2000) |
|
tokenizer.save_pretrained(".") |
|
|
|
config = transformers.AutoConfig.from_pretrained('noamwies/llama-test-gqa-with-better-transformer') |
|
model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=config.torch_dtype) |
|
torch.save(model.state_dict(), 'pytorch_model.bin') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|