import json import tokenizers import torch import transformers def shrink_vocab(tokenizer, new_vocab_size): tokenizer_json = json.loads(tokenizer._tokenizer.to_str()) vocab = tokenizer_json["model"]["vocab"] if tokenizer_json["model"]["type"] == "BPE": new_vocab = { token: i for token, i in vocab.items() if i < new_vocab_size } merges = tokenizer_json["model"]["merges"] new_merges = [] for i in range(len(merges)): if len( merges[i].split()) == 2: a, b = merges[i].split() else: print('skip') continue new_token = "".join((a, b)) if a in new_vocab and b in new_vocab and new_token in new_vocab: new_merges.append(merges[i]) tokenizer_json["model"]["merges"] = new_merges elif tokenizer_json["model"]["type"] == "Unigram": new_vocab = vocab[:new_vocab_size] elif tokenizer_json["model"]["type"] == "WordPiece" or tokenizer_json["model"]["type"] == "WordLevel": new_vocab = { token: i for token, i in vocab.items() if i < new_vocab_size } else: raise ValueError(f"don't know how to handle {tokenizer_json['model']['type']}") tokenizer_json["model"]["vocab"] = new_vocab tokenizer._tokenizer = tokenizers.Tokenizer.from_str(json.dumps(tokenizer_json)) def main(): tokenizer = transformers.AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") shrink_vocab(tokenizer, new_vocab_size=2000) tokenizer.save_pretrained(".") config = transformers.AutoConfig.from_pretrained('noamwies/llama-test-gqa-with-better-transformer') model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=config.torch_dtype) torch.save(model.state_dict(), 'pytorch_model.bin') if __name__ == '__main__': main()