File size: 1,935 Bytes
9057ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-final-v5-BIE
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-final-v5-BIE

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9239
- Precision: 0.9019
- Recall: 0.9013
- F1: 0.9016
- Accuracy: 0.7757

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 2.56  | 100  | 2.2304          | 0.6394    | 0.5974 | 0.6177 | 0.5199   |
| No log        | 5.13  | 200  | 1.3910          | 0.8278    | 0.8224 | 0.8251 | 0.6924   |
| No log        | 7.69  | 300  | 1.0866          | 0.8749    | 0.8743 | 0.8746 | 0.7385   |
| No log        | 10.26 | 400  | 0.9587          | 0.8947    | 0.8941 | 0.8944 | 0.7663   |
| 1.6438        | 12.82 | 500  | 0.9239          | 0.9019    | 0.9013 | 0.9016 | 0.7757   |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 1.8.0+cu101
- Datasets 2.12.0
- Tokenizers 0.13.3