File size: 1,947 Bytes
fb38c45 9672e73 fb38c45 b72273f 184691a a84f017 16984c7 3598894 b307e6f 375f3c0 7835501 66e4c75 b240c06 b148500 f568d38 6820750 774bd29 b0fed9a 7776e23 291ade7 57883a0 7a97d5c 1e13b38 5ab888c 528f81a 2f68c56 c395e7b 78cb99a d9b560b 09b7e58 442ba90 5191200 9672e73 fb38c45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: transformers
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: node-py/my_awesome_eli5_clm-model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# node-py/my_awesome_eli5_clm-model
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0542
- Epoch: 29
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 0.0882 | 0 |
| 0.0878 | 1 |
| 0.0852 | 2 |
| 0.0824 | 3 |
| 0.0810 | 4 |
| 0.0812 | 5 |
| 0.0790 | 6 |
| 0.0772 | 7 |
| 0.0755 | 8 |
| 0.0749 | 9 |
| 0.0717 | 10 |
| 0.0722 | 11 |
| 0.0718 | 12 |
| 0.0689 | 13 |
| 0.0863 | 14 |
| 0.0838 | 15 |
| 0.0731 | 16 |
| 0.0768 | 17 |
| 0.0675 | 18 |
| 0.0646 | 19 |
| 0.0650 | 20 |
| 0.0627 | 21 |
| 0.0610 | 22 |
| 0.0594 | 23 |
| 0.0585 | 24 |
| 0.0585 | 25 |
| 0.0577 | 26 |
| 0.0569 | 27 |
| 0.0565 | 28 |
| 0.0542 | 29 |
### Framework versions
- Transformers 4.44.2
- TensorFlow 2.17.0
- Datasets 2.21.0
- Tokenizers 0.19.1
|