Update README.md
Browse files
README.md
CHANGED
@@ -13,6 +13,31 @@ widget:
|
|
13 |
|
14 |
The [NoHarm-Anony - De-Identification of Clinical Notes Using Contextualized Language Models and a Token Classifier](https://link.springer.com/chapter/10.1007/978-3-030-91699-2_3) paper contains Flair-based models for Portuguese Language, initialized with [Flair BBP](https://github.com/jneto04/ner-pt) & trained on clinical notes with names tagged.
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
## More Information
|
17 |
|
18 |
Refer to the original paper, [De-Identification of Clinical Notes Using Contextualized Language Models and a Token Classifier](https://link.springer.com/chapter/10.1007/978-3-030-91699-2_3) for additional details and performance.
|
|
|
13 |
|
14 |
The [NoHarm-Anony - De-Identification of Clinical Notes Using Contextualized Language Models and a Token Classifier](https://link.springer.com/chapter/10.1007/978-3-030-91699-2_3) paper contains Flair-based models for Portuguese Language, initialized with [Flair BBP](https://github.com/jneto04/ner-pt) & trained on clinical notes with names tagged.
|
15 |
|
16 |
+
### Demo: How to use in Flair
|
17 |
+
|
18 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
19 |
+
|
20 |
+
```python
|
21 |
+
from flair.data import Sentence
|
22 |
+
from flair.models import SequenceTagger
|
23 |
+
# load tagger
|
24 |
+
tagger = SequenceTagger.load("noharm-ai/anony")
|
25 |
+
# make example sentence
|
26 |
+
sentence = Sentence("FISIOTERAPIA TRAUMATO - MANHÃ Henrique Dias, 38 anos. Exercícios metabólicos de extremidades inferiores. Realizo mobilização patelar e leve mobilização de flexão de joelho conforme liberado pelo Dr Marcelo Arocha. Oriento cuidados e posicionamentos.")
|
27 |
+
# predict NER tags
|
28 |
+
tagger.predict(sentence)
|
29 |
+
# print sentence
|
30 |
+
print(sentence)
|
31 |
+
# print predicted NER spans
|
32 |
+
print('The following NER tags are found:')
|
33 |
+
# iterate over entities and print
|
34 |
+
for entity in sentence.get_spans('ner'):
|
35 |
+
print(entity)
|
36 |
+
```
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
## More Information
|
42 |
|
43 |
Refer to the original paper, [De-Identification of Clinical Notes Using Contextualized Language Models and a Token Classifier](https://link.springer.com/chapter/10.1007/978-3-030-91699-2_3) for additional details and performance.
|