File size: 6,977 Bytes
8a00d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from collections import defaultdict\n",
    "from transformers import AutoTokenizer\n",
    "from tqdm import tqdm\n",
    "import json\n",
    "\n",
    "def load_and_process_token_file(input_path, tokenizer_name=\"answerdotai/ModernBERT-base\"):\n",
    "    captions_dict = defaultdict(list)\n",
    "    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)\n",
    "    max_length = 0  # Initialize max length counter\n",
    "\n",
    "    # Read and process the token file with tokenization\n",
    "    with open(input_path, 'r') as file:\n",
    "        for line in tqdm(file, desc=\"Processing Captions\"):\n",
    "            image_id, caption = line.strip().split('\\t')\n",
    "            jpg_number = image_id.split('.')[0]\n",
    "            \n",
    "            # Tokenize without padding and truncation to calculate the true length\n",
    "            tokens = tokenizer(caption, return_tensors=\"pt\", padding=False, truncation=False)\n",
    "            token_ids = tokens['input_ids'].squeeze(0).tolist()\n",
    "            \n",
    "            # Update max_length based on this tokenized sequence length\n",
    "            max_length = max(max_length, len(token_ids))\n",
    "            \n",
    "            # Tokenize with padding and attention mask (padded to 93 tokens)\n",
    "            tokens_padded = tokenizer(caption, return_tensors=\"pt\", padding=\"max_length\", truncation=True, max_length=2**7) # 93 < 2**7\n",
    "            token_ids_padded = tokens_padded['input_ids'].squeeze(0).tolist()\n",
    "            attention_mask = tokens_padded['attention_mask'].squeeze(0).tolist()\n",
    "\n",
    "            # Save both raw caption, tokenized version, and attention mask\n",
    "            captions_dict[jpg_number].append({\n",
    "                \"text\": caption,\n",
    "                \"tokenized\": token_ids_padded,\n",
    "                \"attention_mask\": attention_mask\n",
    "            })\n",
    "\n",
    "    print(f\"Maximum sequence length (before padding): {max_length}\")\n",
    "    return captions_dict, max_length\n",
    "\n",
    "# Define the input path and process the file\n",
    "input_path = '/mnt/nvme/shared_A/datasets/flickr30k/data/results_20130124.token'\n",
    "captions_dict, max_length = load_and_process_token_file(input_path)\n",
    "\n",
    "# Save the modified dictionary with tokenized captions and attention masks to a JSON file\n",
    "output_path = '/mnt/nvme/shared_A/datasets/flickr30k/data/captions_tokenized.json'\n",
    "with open(output_path, 'w') as json_file:\n",
    "    json.dump(captions_dict, json_file)\n",
    "\n",
    "# Display the maximum token length\n",
    "print(f\"Final maximum token length across dataset: {max_length}\")\n",
    "\n",
    "# Display the first few entries to verify the content\n",
    "for jpg, captions in list(captions_dict.items())[:5]:\n",
    "    print(f\"{jpg}: {captions}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# Save the dictionary to a JSON file\n",
    "output_path = '/mnt/nvme/shared_A/datasets/flickr30k/data/captions_dict.json'\n",
    "with open(output_path, 'w') as json_file:\n",
    "    json.dump(captions_dict, json_file)\n",
    "\n",
    "print(f\"Captions dictionary saved to {output_path}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "import os\n",
    "import json\n",
    "import numpy as np\n",
    "import random\n",
    "\n",
    "\n",
    "# Vision Caption Dataset\n",
    "class VisionCaptionDataset(torch.utils.data.Dataset):\n",
    "    def __init__(self, captions_path, embeddings_dir, normalize=True):\n",
    "        with open(captions_path, 'r') as f:\n",
    "            self.captions_dict = json.load(f)\n",
    "\n",
    "        self.embeddings_dir = embeddings_dir\n",
    "        self.image_ids = list(self.captions_dict.keys())\n",
    "        self.normalize = normalize\n",
    "\n",
    "    def __len__(self):\n",
    "        return len(self.image_ids)\n",
    "\n",
    "    def __getitem__(self, idx):\n",
    "        image_id = self.image_ids[idx]\n",
    "        \n",
    "        # Randomly select a caption and load the tokenized version\n",
    "        caption_entry = random.choice(self.captions_dict[image_id])\n",
    "        tokenized_caption = caption_entry[\"tokenized\"]\n",
    "        attention_mask = caption_entry[\"attention_mask\"]\n",
    "\n",
    "        # Load vision embedding\n",
    "        embedding_path = os.path.join(self.embeddings_dir, f\"{image_id}.npy\")\n",
    "        embedding = np.load(embedding_path)\n",
    "\n",
    "        # Convert vision embedding and tokenized caption to tensors\n",
    "        embedding = torch.tensor(embedding, dtype=torch.float32)\n",
    "        tokenized_caption = torch.tensor(tokenized_caption, dtype=torch.long)\n",
    "        attention_mask = torch.tensor(attention_mask, dtype=torch.long)\n",
    "\n",
    "        return embedding, tokenized_caption, attention_mask\n",
    "\n",
    "# Example usage\n",
    "# Paths for dataset\n",
    "captions_path = '/mnt/nvme/shared_A/datasets/flickr30k/data/captions_tokenized.json'\n",
    "embeddings_dir = '/mnt/nvme/shared_A/datasets/flickr30k/data/reduced_vision_embeddings'\n",
    "\n",
    "# Initialize the dataset and split it into train/validation sets\n",
    "full_dataset = VisionCaptionDataset(captions_path, embeddings_dir)\n",
    "\n",
    "# Initialize the DataLoaders with `num_workers` and `pin_memory`\n",
    "train_dataloader = DataLoader(full_dataset, batch_size=16, shuffle=True, num_workers=8, pin_memory=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Verify a batch\n",
    "for batch in train_dataloader:\n",
    "    embeddings, captions, attn_mask = batch\n",
    "    print(embeddings.shape, len(captions))\n",
    "    \n",
    "\n",
    "    break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "hf-env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}