nold commited on
Commit
14ae303
·
verified ·
1 Parent(s): 979d377

Upload folder using huggingface_hub (#1)

Browse files

- 5b93e8eacc2031fa4490d748cb9f4d1aecb08d08b1b8d49a281cabfe6c59ffbd (9e000918baf65d71ec61dd9a860b6ef35fc49c50)
- ea7ae2e205b7eca455e6da33743d8923cb2b7ed75251f01c776cc562d6c7b7b8 (156a177223f748ae8f5933f28812d6737e2b76de)
- 4d5adbc4ba4cfe54875f224a52face2d9c46a869f84473edc5ac15057c9efc90 (34e4cd570ce237b026f40b9e78d2edb455bd70c5)
- a266630cfdad432c070bbe29505a5d33d0fccbb77160428f1e9343646dfc69ee (74fa9a44ba607651a8cdc25c39ab3f51370e4ee7)
- 17ee167dc8226ca83f592fb05c944114217c9b26fe8344393a962bc92c3ad0b6 (97fb6b78a87f83dcb1282a88097c1ace0c6155db)
- f8123d70ce083a33e89e811c2f318d72c3cf79158250fe555e607ea135823f99 (dd2c4b3aa89c0003a43072d09ac6de2655d22531)

.gitattributes CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ OpenMath-Mistral-7B-v0.1-hf_Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
37
+ OpenMath-Mistral-7B-v0.1-hf_Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
38
+ OpenMath-Mistral-7B-v0.1-hf_Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
39
+ OpenMath-Mistral-7B-v0.1-hf_Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
40
+ OpenMath-Mistral-7B-v0.1-hf_Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
OpenMath-Mistral-7B-v0.1-hf_Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de1ddb2a5a7865afba6540f5361c99c09dbe0a4774aac12bd36830911876d5fe
3
+ size 2719241920
OpenMath-Mistral-7B-v0.1-hf_Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cb220fd96aecdef0c7e24d9e5255635a249e1820f028c715b6f7d5a70b9b025
3
+ size 4368438976
OpenMath-Mistral-7B-v0.1-hf_Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0055deb3fc916396d3b6f73332fbe481152c2545efa7c9bb5f7a057fa00ac10a
3
+ size 5131409088
OpenMath-Mistral-7B-v0.1-hf_Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d8e382947d42ce466fefdaed628b9d8fa1fa2b80b8ca7c20ed0d8b81f5cd6ce
3
+ size 5942064832
OpenMath-Mistral-7B-v0.1-hf_Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edbcfe1e14ff526ecc93cb4b1bb3cef3186ba5cc96679d579ad81dc90abf9669
3
+ size 7695857344
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - mistralai/Mistral-7B-v0.1
5
+ datasets:
6
+ - nvidia/OpenMathInstruct-1
7
+ language:
8
+ - en
9
+ tags:
10
+ - nvidia
11
+ - code
12
+ - math
13
+ ---
14
+
15
+
16
+ # OpenMath-Mistral-7B-v0.1-hf
17
+
18
+ OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
19
+ executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
20
+ a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
21
+ [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.
22
+
23
+ <table border="1">
24
+ <tr>
25
+ <td></td>
26
+ <td colspan="2" style="text-align: center;">greedy</td>
27
+ <td colspan="2" style="text-align: center;">majority@50</td>
28
+ </tr>
29
+ <tr>
30
+ <td style="text-align: center;">model</td>
31
+ <td style="text-align: center;">GSM8K</td>
32
+ <td style="text-align: center;">MATH</td>
33
+ <td style="text-align: center;">GMS8K</td>
34
+ <td style="text-align: center;">MATH</td>
35
+ </tr>
36
+ <tr>
37
+ <td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
38
+ <td style="text-align: center;">75.9</td>
39
+ <td style="text-align: center;">43.6</td>
40
+ <td style="text-align: center;">84.8</td>
41
+ <td style="text-align: center;">55.6</td>
42
+ </tr>
43
+ <tr>
44
+ <td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
45
+ <td style="text-align: center;">80.2</td>
46
+ <td style="text-align: center;">44.5</td>
47
+ <td style="text-align: center;">86.9</td>
48
+ <td style="text-align: center;">57.2</td>
49
+ </tr>
50
+ <tr>
51
+ <td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
52
+ <td style="text-align: center;">78.8</td>
53
+ <td style="text-align: center;">45.5</td>
54
+ <td style="text-align: center;">86.8</td>
55
+ <td style="text-align: center;">57.6</td>
56
+ </tr>
57
+ <tr>
58
+ <td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
59
+ <td style="text-align: center;">80.7</td>
60
+ <td style="text-align: center;">48.3</td>
61
+ <td style="text-align: center;">88.0</td>
62
+ <td style="text-align: center;">60.2</td>
63
+ </tr>
64
+ <tr>
65
+ <td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
66
+ <td style="text-align: center;"><b>84.7</b></td>
67
+ <td style="text-align: center;">46.3</td>
68
+ <td style="text-align: center;">90.1</td>
69
+ <td style="text-align: center;">58.3</td>
70
+ </tr>
71
+ <tr>
72
+ <td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
73
+ <td style="text-align: center;">84.6</td>
74
+ <td style="text-align: center;"><b>50.7</b></td>
75
+ <td style="text-align: center;"><b>90.8</b></td>
76
+ <td style="text-align: center;"><b>60.4</b></td>
77
+ </tr>
78
+ </table>
79
+
80
+ The pipeline we used to produce these models is fully open-sourced!
81
+
82
+ - [Code](https://github.com/Kipok/NeMo-Skills)
83
+ - [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
84
+ - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)
85
+
86
+ See our [paper](https://arxiv.org/abs/2402.10176) for more details!
87
+
88
+ # How to use the models?
89
+
90
+ Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
91
+
92
+ # Reproducing our results
93
+
94
+ We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
95
+
96
+ # Improving other models
97
+
98
+ To improve other models or to learn more about our code, read through the docs below.
99
+
100
+ - [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
101
+ - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
102
+ - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
103
+ - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
104
+
105
+ In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
106
+ an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
107
+ It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
108
+ offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
109
+
110
+ # Citation
111
+
112
+ If you find our work useful, please consider citing us!
113
+
114
+ ```bibtex
115
+ @article{toshniwal2024openmath,
116
+ title = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset},
117
+ author = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman},
118
+ year = {2024},
119
+ journal = {arXiv preprint arXiv: Arxiv-2402.10176}
120
+ }
121
+ ```
122
+
123
+ ***
124
+
125
+ Quantization of Model [nvidia/OpenMath-Mistral-7B-v0.1-hf](https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf).
126
+ Created using [llm-quantizer](https://github.com/Nold360/llm-quantizer) Pipeline