nomad-ai commited on
Commit
45f4869
·
1 Parent(s): 7005de6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.60 +/- 0.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7287075331f2bcfac6f37822d1f7b36f6a4c5091465fc9ba9482fb8eb6aef293
3
+ size 112292
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f63af67fd00>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f63af67ad80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
+ "optimizer_kwargs": {
19
+ "alpha": 0.99,
20
+ "eps": 1e-05,
21
+ "weight_decay": 0
22
+ }
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
26
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
27
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
28
+ "_shape": null,
29
+ "dtype": null,
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 3
38
+ ],
39
+ "low": "[-1. -1. -1.]",
40
+ "high": "[1. 1. 1.]",
41
+ "bounded_below": "[ True True True]",
42
+ "bounded_above": "[ True True True]",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 10,
46
+ "num_timesteps": 1000000,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1687921585093552405,
52
+ "learning_rate": 0.00096,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAwBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAzxKOP2/Iwj8E5tS/J1thPsLLlD/8aJK/o3kpvwAjOD+E/KK/N5hdPpAmyT8NTry/GsHGP0uJFD5FWhe/L7wYvyTmsL9Z9bK9B5rXvGpM0z9oWoo/eGEsv+1LPz+OnNk/lP+Gv8NQcr/b562+3X3nvkgpD7+Y6FK/lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADAE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT2UaA5LCksGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]]",
62
+ "desired_goal": "[[ 1.109949 1.5217417 -1.6632695 ]\n [ 0.22007428 1.1624682 -1.1438289 ]\n [-0.6620123 0.71928406 -1.2733312 ]\n [ 0.21640097 1.5714893 -1.4711319 ]\n [ 1.552768 0.14505498 -0.59122115]\n [-0.59662145 -1.3820233 -0.08738203]\n [-0.02631856 1.6507695 1.080884 ]\n [-0.67336226 0.7472523 1.7000902 ]\n [-1.0546746 -0.9465448 -0.33965954]\n [-0.45213214 -0.55922365 -0.8238616 ]]",
63
+ "observation": "[[0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]]"
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAk8VGvRPOoL1L7AE+naQJPikcxz2XQ5g9alA4vekPHTz+Fz0+LcCnu9b8sry4FYk+nBbFPUiqML0OYXk+nr2qvetZvD0x8IM+z7gCPuNQWrxVBNk8y4nGvLtSFL0tNt89Yq1vPR4ZTjzC9yA+s2GuvBmBBb5gt509lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==",
72
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[-0.04852827 -0.07851806 0.12687795]\n [ 0.13441701 0.09722168 0.07434767]\n [-0.04499856 0.00958631 0.18466184]\n [-0.00511934 -0.02184908 0.26774383]\n [ 0.09623453 -0.04313114 0.2435343 ]\n [-0.08336948 0.09196838 0.2576919 ]\n [ 0.12765811 -0.01332495 0.02649132]\n [-0.02423563 -0.03621171 0.10899005]\n [ 0.05851496 0.01257923 0.15719512]\n [-0.02128682 -0.13037528 0.07700992]]",
74
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
+ },
76
+ "_episode_num": 0,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.0,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx7lNuFdm47+UhpRSlIwBbJRLMowBdJRHQKYBrvlU6xR1fZQoaAZoCWgPQwjBAS1dwbbiv5SGlFKUaBVLMmgWR0CmAXI9LYf5dX2UKGgGaAloD0MIKerMPSR847+UhpRSlGgVSzJoFkdApgFG7g88tHV9lChoBmgJaA9DCKUsQxzr4ta/lIaUUpRoFUsyaBZHQKYBG+23KCB1fZQoaAZoCWgPQwhVSzrKwWzAv5SGlFKUaBVLMmgWR0CmAO0jC53DdX2UKGgGaAloD0MISx+6oL5l2L+UhpRSlGgVSzJoFkdApgC/S6UaAHV9lChoBmgJaA9DCCCYo8fvbdy/lIaUUpRoFUsyaBZHQKYAkgIyCWh1fZQoaAZoCWgPQwh7n6pCA7HXv5SGlFKUaBVLMmgWR0CmAGLd30PIdX2UKGgGaAloD0MIJUBNLVvr2b+UhpRSlGgVSzJoFkdApgAXci4axXV9lChoBmgJaA9DCPoJZ7eWydW/lIaUUpRoFUsyaBZHQKX/2g2ZRbd1fZQoaAZoCWgPQwh/oNy271HRv5SGlFKUaBVLMmgWR0CmBIWszVMFdX2UKGgGaAloD0MIacNhaeBH4r+UhpRSlGgVSzJoFkdApgRIhr30w3V9lChoBmgJaA9DCD3TS4xl+tW/lIaUUpRoFUsyaBZHQKYEHRplBhR1fZQoaAZoCWgPQwhxOPOrOcDov5SGlFKUaBVLMmgWR0CmA/HcUM5PdX2UKGgGaAloD0MIjx1U4jrG3r+UhpRSlGgVSzJoFkdApgPCMBIWg3V9lChoBmgJaA9DCM7DCUyntfK/lIaUUpRoFUsyaBZHQKYDk3HaN+91fZQoaAZoCWgPQwhFn48y4gLOv5SGlFKUaBVLMmgWR0CmA2VqN6w/dX2UKGgGaAloD0MIgm+aPjvg2L+UhpRSlGgVSzJoFkdApgM01Q66rnV9lChoBmgJaA9DCHZwsDcxJNy/lIaUUpRoFUsyaBZHQKYC6HJtBOZ1fZQoaAZoCWgPQwiwjuOHSiPyv5SGlFKUaBVLMmgWR0CmAqmw7kn1dX2UKGgGaAloD0MIfV7x1CNN8r+UhpRSlGgVSzJoFkdApgbZgRbr1XV9lChoBmgJaA9DCHTwTGiSWNO/lIaUUpRoFUsyaBZHQKYGnA8jiXJ1fZQoaAZoCWgPQwjl7nN8tDjiv5SGlFKUaBVLMmgWR0CmBnApazNVdX2UKGgGaAloD0MIke9S6pJx1b+UhpRSlGgVSzJoFkdApgZENtqHoHV9lChoBmgJaA9DCO244XfTLeW/lIaUUpRoFUsyaBZHQKYGFJdSl311fZQoaAZoCWgPQwgiHLPsSSDyv5SGlFKUaBVLMmgWR0CmBeYMWoFWdX2UKGgGaAloD0MI8UqS5/o+4b+UhpRSlGgVSzJoFkdApgW4QUYbbXV9lChoBmgJaA9DCCMw1jcwOe2/lIaUUpRoFUsyaBZHQKYFiNrCWNZ1fZQoaAZoCWgPQwhj00ohkEvYv5SGlFKUaBVLMmgWR0CmBT3EZR8/dX2UKGgGaAloD0MIsmSO5V3117+UhpRSlGgVSzJoFkdApgUAEwFkhHV9lChoBmgJaA9DCG1y+KQTCdq/lIaUUpRoFUsyaBZHQKYJLI/Z/Td1fZQoaAZoCWgPQwgqjC0EOSjav5SGlFKUaBVLMmgWR0CmCO8ifQKKdX2UKGgGaAloD0MIU5eMYyR70r+UhpRSlGgVSzJoFkdApgjDHwPRRnV9lChoBmgJaA9DCIGv6NZretu/lIaUUpRoFUsyaBZHQKYIlzPrv9d1fZQoaAZoCWgPQwjqBgq8k0/mv5SGlFKUaBVLMmgWR0CmCGeKTB69dX2UKGgGaAloD0MI8uuH2GBh4L+UhpRSlGgVSzJoFkdApgg4yAQQMHV9lChoBmgJaA9DCERrRZvj3Nm/lIaUUpRoFUsyaBZHQKYICpwS8J51fZQoaAZoCWgPQwicTrLV5ZTav5SGlFKUaBVLMmgWR0CmB9o86mwadX2UKGgGaAloD0MIs9MP6iIF47+UhpRSlGgVSzJoFkdApgeN3Sro4nV9lChoBmgJaA9DCAHaVrPO+PK/lIaUUpRoFUsyaBZHQKYHT0yxiXp1fZQoaAZoCWgPQwjymld1Vovwv5SGlFKUaBVLMmgWR0CmC2H0se4kdX2UKGgGaAloD0MISMDo8uZw3b+UhpRSlGgVSzJoFkdApgskasIVunV9lChoBmgJaA9DCKWfcHZrmcy/lIaUUpRoFUsyaBZHQKYK+INVinZ1fZQoaAZoCWgPQwi371F/vULsv5SGlFKUaBVLMmgWR0CmCsyDyvs7dX2UKGgGaAloD0MI7URJSKRt77+UhpRSlGgVSzJoFkdApgqcmQbMo3V9lChoBmgJaA9DCNgRh2wgXeC/lIaUUpRoFUsyaBZHQKYKbgQ6IWR1fZQoaAZoCWgPQwiQgxJm2v7av5SGlFKUaBVLMmgWR0CmCkASOBDpdX2UKGgGaAloD0MII8DpXbyf6b+UhpRSlGgVSzJoFkdApgoPxWkrPXV9lChoBmgJaA9DCDDZeLDFbue/lIaUUpRoFUsyaBZHQKYJw1Muez51fZQoaAZoCWgPQwha9bnaiv3lv5SGlFKUaBVLMmgWR0CmCYTtTkyUdX2UKGgGaAloD0MITIv6JHfYxr+UhpRSlGgVSzJoFkdApg2icmShanV9lChoBmgJaA9DCKW8VkJ3yeW/lIaUUpRoFUsyaBZHQKYNZOzposZ1fZQoaAZoCWgPQwgFbAcj9gnRv5SGlFKUaBVLMmgWR0CmDTjBl+VkdX2UKGgGaAloD0MIsACmDBzQyr+UhpRSlGgVSzJoFkdApg0Mx9G7SXV9lChoBmgJaA9DCPNXyFwZ1OS/lIaUUpRoFUsyaBZHQKYM3PWxyGV1fZQoaAZoCWgPQwjqBgq8k0/hv5SGlFKUaBVLMmgWR0CmDK5wwTM8dX2UKGgGaAloD0MIA+li00qh5b+UhpRSlGgVSzJoFkdApgyANqgyunV9lChoBmgJaA9DCOi9MQQAR+C/lIaUUpRoFUsyaBZHQKYMT6VMVUN1fZQoaAZoCWgPQwiiYpy/CYXKv5SGlFKUaBVLMmgWR0CmDANMXaakdX2UKGgGaAloD0MILbEyGvm81L+UhpRSlGgVSzJoFkdApgvEspXp4nV9lChoBmgJaA9DCGSV0jO9xNO/lIaUUpRoFUsyaBZHQKYP5Bhx5s11fZQoaAZoCWgPQwjkolpEFJPiv5SGlFKUaBVLMmgWR0CmD6avaDf4dX2UKGgGaAloD0MIOgZkr3f/6b+UhpRSlGgVSzJoFkdApg96uQp4KXV9lChoBmgJaA9DCOAsJctJKNC/lIaUUpRoFUsyaBZHQKYPTsO5J9R1fZQoaAZoCWgPQwjB5bFmZBDhv5SGlFKUaBVLMmgWR0CmDx7o0Q9SdX2UKGgGaAloD0MIY5rpXif13r+UhpRSlGgVSzJoFkdApg7wSQHRkXV9lChoBmgJaA9DCFtdTgmISc6/lIaUUpRoFUsyaBZHQKYOwlHBk7R1fZQoaAZoCWgPQwh+c3/1uG/Zv5SGlFKUaBVLMmgWR0CmDpJZW7vodX2UKGgGaAloD0MIS3UBLzNsxr+UhpRSlGgVSzJoFkdApg5F/pdKNHV9lChoBmgJaA9DCKClK9hGPOa/lIaUUpRoFUsyaBZHQKYOB4593KV1fZQoaAZoCWgPQwh5rBkZ5K7gv5SGlFKUaBVLMmgWR0CmEiQ/5ckddX2UKGgGaAloD0MIih9j7lrC47+UhpRSlGgVSzJoFkdAphHm3MINVnV9lChoBmgJaA9DCDOl9bcE4Ne/lIaUUpRoFUsyaBZHQKYRuwcHWz51fZQoaAZoCWgPQwh0z7pGy4Hdv5SGlFKUaBVLMmgWR0CmEY8ophF3dX2UKGgGaAloD0MIOIHptG6D4r+UhpRSlGgVSzJoFkdAphFfbwjMV3V9lChoBmgJaA9DCE6Zm29E99O/lIaUUpRoFUsyaBZHQKYRMLG7z091fZQoaAZoCWgPQwjIBtLFppXEv5SGlFKUaBVLMmgWR0CmEQKeK8+SdX2UKGgGaAloD0MIVrq7zob80r+UhpRSlGgVSzJoFkdAphDSJZW7v3V9lChoBmgJaA9DCB5OYDqt2+O/lIaUUpRoFUsyaBZHQKYQhZ26kIp1fZQoaAZoCWgPQwiWlpF6T2Xjv5SGlFKUaBVLMmgWR0CmEEcMEzO5dX2UKGgGaAloD0MIsvShC+pb1b+UhpRSlGgVSzJoFkdAphRjuYx+KHV9lChoBmgJaA9DCLadtkYEY+S/lIaUUpRoFUsyaBZHQKYUJkFwDNh1fZQoaAZoCWgPQwiN7iB2ptDcv5SGlFKUaBVLMmgWR0CmE/piiItUdX2UKGgGaAloD0MIv/IgPUUO07+UhpRSlGgVSzJoFkdAphPOYQarFXV9lChoBmgJaA9DCB7C+Gncm+a/lIaUUpRoFUsyaBZHQKYTnuO0b991fZQoaAZoCWgPQwgX1/hM9k/hv5SGlFKUaBVLMmgWR0CmE3Au7HyVdX2UKGgGaAloD0MI0sJlFTYD4b+UhpRSlGgVSzJoFkdAphNCUX531XV9lChoBmgJaA9DCK2kFd9Q+NW/lIaUUpRoFUsyaBZHQKYTEgieNDN1fZQoaAZoCWgPQwg9nStKCUHkv5SGlFKUaBVLMmgWR0CmEsXXqZ+hdX2UKGgGaAloD0MI2gQYlj/f4b+UhpRSlGgVSzJoFkdAphKHZRKpUHV9lChoBmgJaA9DCOIgIcoXtMy/lIaUUpRoFUsyaBZHQKYWorYoRZl1fZQoaAZoCWgPQwj6ff/mxYnRv5SGlFKUaBVLMmgWR0CmFmUYCQtBdX2UKGgGaAloD0MIPulEgqnm7L+UhpRSlGgVSzJoFkdAphY5EKE39HV9lChoBmgJaA9DCHLFxVG5Ceq/lIaUUpRoFUsyaBZHQKYWDRJEpiJ1fZQoaAZoCWgPQwiFX+rnTUXVv5SGlFKUaBVLMmgWR0CmFd1RDTjOdX2UKGgGaAloD0MIlnhA2ZQr2b+UhpRSlGgVSzJoFkdAphWuiSJTEXV9lChoBmgJaA9DCPRtwVJdwOa/lIaUUpRoFUsyaBZHQKYVgGsV+JB1fZQoaAZoCWgPQwi6TbhX5q3nv5SGlFKUaBVLMmgWR0CmFU/6wdKedX2UKGgGaAloD0MIKPT6k/jc6L+UhpRSlGgVSzJoFkdAphUDsSkCWHV9lChoBmgJaA9DCKpla32R0OC/lIaUUpRoFUsyaBZHQKYUxSXt0FN1ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 12500,
89
+ "n_steps": 8,
90
+ "gamma": 0.99,
91
+ "gae_lambda": 0.9,
92
+ "ent_coef": 0.0,
93
+ "vf_coef": 0.4,
94
+ "max_grad_norm": 0.5,
95
+ "normalize_advantage": false
96
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:341959bce3a74004abd29711bc1be1a64d3435f821296850fca10e1633f6cb45
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63af27dd6d894d184bdbe7e5229d76ff3058b111df03bda4be3ce4a372d66792
3
+ size 46718
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f63af67fd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f63af67ad80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 10, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687921585093552405, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAwBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/wBPvPjHMNjz8WQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAzxKOP2/Iwj8E5tS/J1thPsLLlD/8aJK/o3kpvwAjOD+E/KK/N5hdPpAmyT8NTry/GsHGP0uJFD5FWhe/L7wYvyTmsL9Z9bK9B5rXvGpM0z9oWoo/eGEsv+1LPz+OnNk/lP+Gv8NQcr/b562+3X3nvkgpD7+Y6FK/lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADAE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT3AE+8+Mcw2PPxZDT/G21Q95eIgOrreOT2UaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]\n [0.46694756 0.01115708 0.5521543 ]]", "desired_goal": "[[ 1.109949 1.5217417 -1.6632695 ]\n [ 0.22007428 1.1624682 -1.1438289 ]\n [-0.6620123 0.71928406 -1.2733312 ]\n [ 0.21640097 1.5714893 -1.4711319 ]\n [ 1.552768 0.14505498 -0.59122115]\n [-0.59662145 -1.3820233 -0.08738203]\n [-0.02631856 1.6507695 1.080884 ]\n [-0.67336226 0.7472523 1.7000902 ]\n [-1.0546746 -0.9465448 -0.33965954]\n [-0.45213214 -0.55922365 -0.8238616 ]]", "observation": "[[0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]\n [0.46694756 0.01115708 0.5521543 0.0519674 0.00061373 0.04537842]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAk8VGvRPOoL1L7AE+naQJPikcxz2XQ5g9alA4vekPHTz+Fz0+LcCnu9b8sry4FYk+nBbFPUiqML0OYXk+nr2qvetZvD0x8IM+z7gCPuNQWrxVBNk8y4nGvLtSFL0tNt89Yq1vPR4ZTjzC9yA+s2GuvBmBBb5gt509lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04852827 -0.07851806 0.12687795]\n [ 0.13441701 0.09722168 0.07434767]\n [-0.04499856 0.00958631 0.18466184]\n [-0.00511934 -0.02184908 0.26774383]\n [ 0.09623453 -0.04313114 0.2435343 ]\n [-0.08336948 0.09196838 0.2576919 ]\n [ 0.12765811 -0.01332495 0.02649132]\n [-0.02423563 -0.03621171 0.10899005]\n [ 0.05851496 0.01257923 0.15719512]\n [-0.02128682 -0.13037528 0.07700992]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx7lNuFdm47+UhpRSlIwBbJRLMowBdJRHQKYBrvlU6xR1fZQoaAZoCWgPQwjBAS1dwbbiv5SGlFKUaBVLMmgWR0CmAXI9LYf5dX2UKGgGaAloD0MIKerMPSR847+UhpRSlGgVSzJoFkdApgFG7g88tHV9lChoBmgJaA9DCKUsQxzr4ta/lIaUUpRoFUsyaBZHQKYBG+23KCB1fZQoaAZoCWgPQwhVSzrKwWzAv5SGlFKUaBVLMmgWR0CmAO0jC53DdX2UKGgGaAloD0MISx+6oL5l2L+UhpRSlGgVSzJoFkdApgC/S6UaAHV9lChoBmgJaA9DCCCYo8fvbdy/lIaUUpRoFUsyaBZHQKYAkgIyCWh1fZQoaAZoCWgPQwh7n6pCA7HXv5SGlFKUaBVLMmgWR0CmAGLd30PIdX2UKGgGaAloD0MIJUBNLVvr2b+UhpRSlGgVSzJoFkdApgAXci4axXV9lChoBmgJaA9DCPoJZ7eWydW/lIaUUpRoFUsyaBZHQKX/2g2ZRbd1fZQoaAZoCWgPQwh/oNy271HRv5SGlFKUaBVLMmgWR0CmBIWszVMFdX2UKGgGaAloD0MIacNhaeBH4r+UhpRSlGgVSzJoFkdApgRIhr30w3V9lChoBmgJaA9DCD3TS4xl+tW/lIaUUpRoFUsyaBZHQKYEHRplBhR1fZQoaAZoCWgPQwhxOPOrOcDov5SGlFKUaBVLMmgWR0CmA/HcUM5PdX2UKGgGaAloD0MIjx1U4jrG3r+UhpRSlGgVSzJoFkdApgPCMBIWg3V9lChoBmgJaA9DCM7DCUyntfK/lIaUUpRoFUsyaBZHQKYDk3HaN+91fZQoaAZoCWgPQwhFn48y4gLOv5SGlFKUaBVLMmgWR0CmA2VqN6w/dX2UKGgGaAloD0MIgm+aPjvg2L+UhpRSlGgVSzJoFkdApgM01Q66rnV9lChoBmgJaA9DCHZwsDcxJNy/lIaUUpRoFUsyaBZHQKYC6HJtBOZ1fZQoaAZoCWgPQwiwjuOHSiPyv5SGlFKUaBVLMmgWR0CmAqmw7kn1dX2UKGgGaAloD0MIfV7x1CNN8r+UhpRSlGgVSzJoFkdApgbZgRbr1XV9lChoBmgJaA9DCHTwTGiSWNO/lIaUUpRoFUsyaBZHQKYGnA8jiXJ1fZQoaAZoCWgPQwjl7nN8tDjiv5SGlFKUaBVLMmgWR0CmBnApazNVdX2UKGgGaAloD0MIke9S6pJx1b+UhpRSlGgVSzJoFkdApgZENtqHoHV9lChoBmgJaA9DCO244XfTLeW/lIaUUpRoFUsyaBZHQKYGFJdSl311fZQoaAZoCWgPQwgiHLPsSSDyv5SGlFKUaBVLMmgWR0CmBeYMWoFWdX2UKGgGaAloD0MI8UqS5/o+4b+UhpRSlGgVSzJoFkdApgW4QUYbbXV9lChoBmgJaA9DCCMw1jcwOe2/lIaUUpRoFUsyaBZHQKYFiNrCWNZ1fZQoaAZoCWgPQwhj00ohkEvYv5SGlFKUaBVLMmgWR0CmBT3EZR8/dX2UKGgGaAloD0MIsmSO5V3117+UhpRSlGgVSzJoFkdApgUAEwFkhHV9lChoBmgJaA9DCG1y+KQTCdq/lIaUUpRoFUsyaBZHQKYJLI/Z/Td1fZQoaAZoCWgPQwgqjC0EOSjav5SGlFKUaBVLMmgWR0CmCO8ifQKKdX2UKGgGaAloD0MIU5eMYyR70r+UhpRSlGgVSzJoFkdApgjDHwPRRnV9lChoBmgJaA9DCIGv6NZretu/lIaUUpRoFUsyaBZHQKYIlzPrv9d1fZQoaAZoCWgPQwjqBgq8k0/mv5SGlFKUaBVLMmgWR0CmCGeKTB69dX2UKGgGaAloD0MI8uuH2GBh4L+UhpRSlGgVSzJoFkdApgg4yAQQMHV9lChoBmgJaA9DCERrRZvj3Nm/lIaUUpRoFUsyaBZHQKYICpwS8J51fZQoaAZoCWgPQwicTrLV5ZTav5SGlFKUaBVLMmgWR0CmB9o86mwadX2UKGgGaAloD0MIs9MP6iIF47+UhpRSlGgVSzJoFkdApgeN3Sro4nV9lChoBmgJaA9DCAHaVrPO+PK/lIaUUpRoFUsyaBZHQKYHT0yxiXp1fZQoaAZoCWgPQwjymld1Vovwv5SGlFKUaBVLMmgWR0CmC2H0se4kdX2UKGgGaAloD0MISMDo8uZw3b+UhpRSlGgVSzJoFkdApgskasIVunV9lChoBmgJaA9DCKWfcHZrmcy/lIaUUpRoFUsyaBZHQKYK+INVinZ1fZQoaAZoCWgPQwi371F/vULsv5SGlFKUaBVLMmgWR0CmCsyDyvs7dX2UKGgGaAloD0MI7URJSKRt77+UhpRSlGgVSzJoFkdApgqcmQbMo3V9lChoBmgJaA9DCNgRh2wgXeC/lIaUUpRoFUsyaBZHQKYKbgQ6IWR1fZQoaAZoCWgPQwiQgxJm2v7av5SGlFKUaBVLMmgWR0CmCkASOBDpdX2UKGgGaAloD0MII8DpXbyf6b+UhpRSlGgVSzJoFkdApgoPxWkrPXV9lChoBmgJaA9DCDDZeLDFbue/lIaUUpRoFUsyaBZHQKYJw1Muez51fZQoaAZoCWgPQwha9bnaiv3lv5SGlFKUaBVLMmgWR0CmCYTtTkyUdX2UKGgGaAloD0MITIv6JHfYxr+UhpRSlGgVSzJoFkdApg2icmShanV9lChoBmgJaA9DCKW8VkJ3yeW/lIaUUpRoFUsyaBZHQKYNZOzposZ1fZQoaAZoCWgPQwgFbAcj9gnRv5SGlFKUaBVLMmgWR0CmDTjBl+VkdX2UKGgGaAloD0MIsACmDBzQyr+UhpRSlGgVSzJoFkdApg0Mx9G7SXV9lChoBmgJaA9DCPNXyFwZ1OS/lIaUUpRoFUsyaBZHQKYM3PWxyGV1fZQoaAZoCWgPQwjqBgq8k0/hv5SGlFKUaBVLMmgWR0CmDK5wwTM8dX2UKGgGaAloD0MIA+li00qh5b+UhpRSlGgVSzJoFkdApgyANqgyunV9lChoBmgJaA9DCOi9MQQAR+C/lIaUUpRoFUsyaBZHQKYMT6VMVUN1fZQoaAZoCWgPQwiiYpy/CYXKv5SGlFKUaBVLMmgWR0CmDANMXaakdX2UKGgGaAloD0MILbEyGvm81L+UhpRSlGgVSzJoFkdApgvEspXp4nV9lChoBmgJaA9DCGSV0jO9xNO/lIaUUpRoFUsyaBZHQKYP5Bhx5s11fZQoaAZoCWgPQwjkolpEFJPiv5SGlFKUaBVLMmgWR0CmD6avaDf4dX2UKGgGaAloD0MIOgZkr3f/6b+UhpRSlGgVSzJoFkdApg96uQp4KXV9lChoBmgJaA9DCOAsJctJKNC/lIaUUpRoFUsyaBZHQKYPTsO5J9R1fZQoaAZoCWgPQwjB5bFmZBDhv5SGlFKUaBVLMmgWR0CmDx7o0Q9SdX2UKGgGaAloD0MIY5rpXif13r+UhpRSlGgVSzJoFkdApg7wSQHRkXV9lChoBmgJaA9DCFtdTgmISc6/lIaUUpRoFUsyaBZHQKYOwlHBk7R1fZQoaAZoCWgPQwh+c3/1uG/Zv5SGlFKUaBVLMmgWR0CmDpJZW7vodX2UKGgGaAloD0MIS3UBLzNsxr+UhpRSlGgVSzJoFkdApg5F/pdKNHV9lChoBmgJaA9DCKClK9hGPOa/lIaUUpRoFUsyaBZHQKYOB4593KV1fZQoaAZoCWgPQwh5rBkZ5K7gv5SGlFKUaBVLMmgWR0CmEiQ/5ckddX2UKGgGaAloD0MIih9j7lrC47+UhpRSlGgVSzJoFkdAphHm3MINVnV9lChoBmgJaA9DCDOl9bcE4Ne/lIaUUpRoFUsyaBZHQKYRuwcHWz51fZQoaAZoCWgPQwh0z7pGy4Hdv5SGlFKUaBVLMmgWR0CmEY8ophF3dX2UKGgGaAloD0MIOIHptG6D4r+UhpRSlGgVSzJoFkdAphFfbwjMV3V9lChoBmgJaA9DCE6Zm29E99O/lIaUUpRoFUsyaBZHQKYRMLG7z091fZQoaAZoCWgPQwjIBtLFppXEv5SGlFKUaBVLMmgWR0CmEQKeK8+SdX2UKGgGaAloD0MIVrq7zob80r+UhpRSlGgVSzJoFkdAphDSJZW7v3V9lChoBmgJaA9DCB5OYDqt2+O/lIaUUpRoFUsyaBZHQKYQhZ26kIp1fZQoaAZoCWgPQwiWlpF6T2Xjv5SGlFKUaBVLMmgWR0CmEEcMEzO5dX2UKGgGaAloD0MIsvShC+pb1b+UhpRSlGgVSzJoFkdAphRjuYx+KHV9lChoBmgJaA9DCLadtkYEY+S/lIaUUpRoFUsyaBZHQKYUJkFwDNh1fZQoaAZoCWgPQwiN7iB2ptDcv5SGlFKUaBVLMmgWR0CmE/piiItUdX2UKGgGaAloD0MIv/IgPUUO07+UhpRSlGgVSzJoFkdAphPOYQarFXV9lChoBmgJaA9DCB7C+Gncm+a/lIaUUpRoFUsyaBZHQKYTnuO0b991fZQoaAZoCWgPQwgX1/hM9k/hv5SGlFKUaBVLMmgWR0CmE3Au7HyVdX2UKGgGaAloD0MI0sJlFTYD4b+UhpRSlGgVSzJoFkdAphNCUX531XV9lChoBmgJaA9DCK2kFd9Q+NW/lIaUUpRoFUsyaBZHQKYTEgieNDN1fZQoaAZoCWgPQwg9nStKCUHkv5SGlFKUaBVLMmgWR0CmEsXXqZ+hdX2UKGgGaAloD0MI2gQYlj/f4b+UhpRSlGgVSzJoFkdAphKHZRKpUHV9lChoBmgJaA9DCOIgIcoXtMy/lIaUUpRoFUsyaBZHQKYWorYoRZl1fZQoaAZoCWgPQwj6ff/mxYnRv5SGlFKUaBVLMmgWR0CmFmUYCQtBdX2UKGgGaAloD0MIPulEgqnm7L+UhpRSlGgVSzJoFkdAphY5EKE39HV9lChoBmgJaA9DCHLFxVG5Ceq/lIaUUpRoFUsyaBZHQKYWDRJEpiJ1fZQoaAZoCWgPQwiFX+rnTUXVv5SGlFKUaBVLMmgWR0CmFd1RDTjOdX2UKGgGaAloD0MIlnhA2ZQr2b+UhpRSlGgVSzJoFkdAphWuiSJTEXV9lChoBmgJaA9DCPRtwVJdwOa/lIaUUpRoFUsyaBZHQKYVgGsV+JB1fZQoaAZoCWgPQwi6TbhX5q3nv5SGlFKUaBVLMmgWR0CmFU/6wdKedX2UKGgGaAloD0MIKPT6k/jc6L+UhpRSlGgVSzJoFkdAphUDsSkCWHV9lChoBmgJaA9DCKpla32R0OC/lIaUUpRoFUsyaBZHQKYUxSXt0FN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (268 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.6036812004284002, "std_reward": 0.2864612517560511, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-28T03:56:29.286311"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ed11d2f601cac4f0a66bb8aa479d3debba3b2de80e8e1655c8eadab2984c44b
3
+ size 3117