File size: 6,665 Bytes
dffb49e c0e5d49 dffb49e e6083f6 6e69bb6 e6083f6 dffb49e 72cf151 f4530b1 72cf151 f4530b1 72cf151 f4530b1 72cf151 f4530b1 d796152 f4530b1 da800d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: apache-2.0
datasets:
- nomic-ai/gpt4all-j-prompt-generations
language:
- en
pipeline_tag: text-generation
---
# Model Card for GPT4All-J
An Apache-2 licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model has been finetuned from [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B)
- **Developed by:** [Nomic AI](https://home.nomic.ai)
- **Model Type:** A finetuned GPT-J model on assistant style interaction data
- **Language(s) (NLP):** English
- **License:** Apache-2
- **Finetuned from model [optional]:** [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B)
We have released several versions of our finetuned GPT-J model using [different dataset versions](https://huggingface.co/datasets/nomic-ai/gpt4all-j-prompt-generations)
- v1.0: The original model trained on the v1.0 dataset
- v1.1-breezy: Trained on afiltered dataset where we removed all instances of AI language model
- v1.2-jazzy: Trained on a filtered dataset where we also removed instances like I'm sorry, I can't answer... and AI language model
- v1.3-groovy: We added Dolly and ShareGPT to the v1.2 dataset and removed ~8% of the dataset in v1.2 that contained semantic duplicates using [Atlas](https://atlas.nomic.ai/).
To download a model with a specific revision run
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("nomic-ai/gpt4all-j", revision="v1.2-jazzy")
```
Downloading without specifying `revision` defaults to `main`/`v1.0`.
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
- **Base Model Repository:** [https://github.com/kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax)
- **Paper [optional]:** [GPT4All-J: An Apache-2 Licensed Assistant-Style Chatbot](https://s3.amazonaws.com/static.nomic.ai/gpt4all/2023_GPT4All-J_Technical_Report_2.pdf)
- **Demo [optional]:** [https://gpt4all.io/](https://gpt4all.io/)
### Training Procedure
GPT4All is made possible by our compute partner [Paperspace](https://www.paperspace.com/).
Trained on a DGX cluster with 8 A100 80GB GPUs for ~12 hours. Using Deepspeed + Accelerate, we use a global batch size of 256 with a learning rate of 2e-5. More information can be found in the repo.
### Results
Results on common sense reasoning benchmarks
```
| Model | BoolQ | PIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg. |
|:--------------------------|:--------:|:--------:|:---------:|:----------:|:--------:|:--------:|:--------:|:--------:|
| GPT4All-J 6B v1.0 | 73.4 | 74.8 | 63.4 | 64.7 | 54.9 | 36.0 | 40.2 | 58.2 |
| GPT4All-J v1.1-breezy | 74.0 | 75.1 | 63.2 | 63.6 | 55.4 | 34.9 | 38.4 | 57.8 |
| GPT4All-J v1.2-jazzy | 74.8 | 74.9 | 63.6 | 63.8 | 56.6 | 35.3 | 41.0 | 58.6 |
| GPT4All-J v1.3-groovy | 73.6 | 74.3 | 63.8 | 63.5 | 57.7 | 35.0 | 38.8 | 58.1 |
| GPT4All-J Lora 6B | 68.6 | 75.8 | 66.2 | 63.5 | 56.4 | 35.7 | 40.2 | 58.1 |
| GPT4All LLaMa Lora 7B | 73.1 | 77.6 | 72.1 | 67.8 | 51.1 | 40.4 | 40.2 | 60.3 |
| GPT4All 13B snoozy | **83.3** | 79.2 | 75.0 | **71.3** | 60.9 | 44.2 | 43.4 | **65.3** |
| Dolly 6B | 68.8 | 77.3 | 67.6 | 63.9 | 62.9 | 38.7 | 41.2 | 60.1 |
| Dolly 12B | 56.7 | 75.4 | 71.0 | 62.2 | 64.6 | 38.5 | 40.4 | 58.4 |
| Alpaca 7B | 73.9 | 77.2 | 73.9 | 66.1 | 59.8 | 43.3 | 43.4 | 62.4 |
| Alpaca Lora 7B | 74.3 | **79.3** | 74.0 | 68.8 | 56.6 | 43.9 | 42.6 | 62.8 |
| GPT-J 6.7B | 65.4 | 76.2 | 66.2 | 64.1 | 62.2 | 36.6 | 38.2 | 58.4 |
| LLama 7B | 73.1 | 77.4 | 73.0 | 66.9 | 52.5 | 41.4 | 42.4 | 61.0 |
| LLama 13B | 68.5 | 79.1 | 76.2 | 70.1 | 60.0 | **44.6** | 42.2 | 63.0 |
| Pythia 6.7B | 63.5 | 76.3 | 64.0 | 61.1 | 61.3 | 35.2 | 37.2 | 57.0 |
| Pythia 12B | 67.7 | 76.6 | 67.3 | 63.8 | 63.9 | 34.8 | 38 | 58.9 |
| Fastchat T5 | 81.5 | 64.6 | 46.3 | 61.8 | 49.3 | 33.3 | 39.4 | 53.7 |
| Fastchat Vicuña 7B | 76.6 | 77.2 | 70.7 | 67.3 | 53.5 | 41.2 | 40.8 | 61.0 |
| Fastchat Vicuña 13B | 81.5 | 76.8 | 73.3 | 66.7 | 57.4 | 42.7 | 43.6 | 63.1 |
| StableVicuña RLHF | 82.3 | 78.6 | 74.1 | 70.9 | 61.0 | 43.5 | **44.4** | 65.0 |
| StableLM Tuned | 62.5 | 71.2 | 53.6 | 54.8 | 52.4 | 31.1 | 33.4 | 51.3 |
| StableLM Base | 60.1 | 67.4 | 41.2 | 50.1 | 44.9 | 27.0 | 32.0 | 42.2 |
| Koala 13B | 76.5 | 77.9 | 72.6 | 68.8 | 54.3 | 41.0 | 42.8 | 62.0 |
| Open Assistant Pythia 12B | 67.9 | 78.0 | 68.1 | 65.0 | 64.2 | 40.4 | 43.2 | 61.0 |
| Mosaic mpt-7b | 74.8 | **79.3** | **76.3** | 68.6 | **70.0** | 42.2 | 42.6 | 64.8 |
| text-davinci-003 | 88.1 | 83.8 | 83.4 | 75.8 | 83.9 | 63.9 | 51.0 | 75.7 |
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nomic-ai__gpt4all-j)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 37.41 |
| ARC (25-shot) | 41.98 |
| HellaSwag (10-shot) | 64.06 |
| MMLU (5-shot) | 28.2 |
| TruthfulQA (0-shot) | 42.78 |
| Winogrande (5-shot) | 64.72 |
| GSM8K (5-shot) | 7.2 |
| DROP (3-shot) | 12.94 |
|