Fill-Mask
Transformers
PyTorch
Safetensors
English
nomic_bert
custom_code
zpn commited on
Commit
5c0d092
·
verified ·
1 Parent(s): 4585c36

Update modeling_hf_nomic_bert.py

Browse files
Files changed (1) hide show
  1. modeling_hf_nomic_bert.py +9 -4
modeling_hf_nomic_bert.py CHANGED
@@ -316,7 +316,9 @@ class NomicBertPreTrainedModel(PreTrainedModel):
316
  num_labels = kwargs.pop("num_labels", None)
317
  rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
318
  strict = kwargs.pop("strict", True)
319
- config.rotary_scaling_factor = rotary_scaling_factor
 
 
320
  if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
321
  config.n_positions = 2048
322
  if num_labels:
@@ -325,7 +327,10 @@ class NomicBertPreTrainedModel(PreTrainedModel):
325
  if "add_pooling_layer" in kwargs:
326
  model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
327
  else:
328
- model = cls(config, *inputs)
 
 
 
329
  # TODO: fix this
330
  # Assuming we know what we're doing when loading from disk
331
  # Prob a bad assumption but i'm tired and want to train this asap
@@ -344,7 +349,7 @@ class NomicBertPreTrainedModel(PreTrainedModel):
344
  load_return = model.load_state_dict(state_dict, strict=False)
345
  else:
346
  # TODO: can probably check config class and see if we need to remap from a bert model
347
- state_dict = state_dict_from_pretrained(model_name)
348
  state_dict = remap_bert_state_dict(
349
  state_dict,
350
  config,
@@ -1057,9 +1062,9 @@ class NomicBertModel(NomicBertPreTrainedModel):
1057
  def forward(
1058
  self,
1059
  input_ids,
 
1060
  position_ids=None,
1061
  token_type_ids=None,
1062
- attention_mask=None,
1063
  return_dict=None,
1064
  matryoshka_dim=None,
1065
  ):
 
316
  num_labels = kwargs.pop("num_labels", None)
317
  rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
318
  strict = kwargs.pop("strict", True)
319
+ if rotary_scaling_factor:
320
+ config.rotary_scaling_factor = rotary_scaling_factor
321
+
322
  if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
323
  config.n_positions = 2048
324
  if num_labels:
 
327
  if "add_pooling_layer" in kwargs:
328
  model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
329
  else:
330
+ if cls == NomicBertModel:
331
+ model = cls(config, *inputs, add_pooling_layer=False)
332
+ else:
333
+ model = cls(config, *inputs)
334
  # TODO: fix this
335
  # Assuming we know what we're doing when loading from disk
336
  # Prob a bad assumption but i'm tired and want to train this asap
 
349
  load_return = model.load_state_dict(state_dict, strict=False)
350
  else:
351
  # TODO: can probably check config class and see if we need to remap from a bert model
352
+ state_dict = state_dict_from_pretrained(model_name, safe_serialization=kwargs.get("safe_serialization", False))
353
  state_dict = remap_bert_state_dict(
354
  state_dict,
355
  config,
 
1062
  def forward(
1063
  self,
1064
  input_ids,
1065
+ attention_mask=None,
1066
  position_ids=None,
1067
  token_type_ids=None,
 
1068
  return_dict=None,
1069
  matryoshka_dim=None,
1070
  ):