File size: 5,841 Bytes
9de69ac f326ddf 1111402 f326ddf 9a04576 f326ddf 9a04576 f326ddf 9a04576 f326ddf 5e79c62 f326ddf 5e79c62 f326ddf 9a04576 f326ddf 9a04576 f326ddf 9a04576 f326ddf 9a04576 9de69ac 1ac68eb 9a04576 f326ddf 9a04576 5e79c62 f326ddf 9a04576 f326ddf 9a04576 f326ddf 9a04576 f326ddf 9a04576 f326ddf 9a04576 f326ddf 9a04576 e855ea0 f326ddf 9a04576 e855ea0 f326ddf 9a04576 f326ddf 9a04576 f326ddf 9a04576 f326ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
license: apache-2.0
datasets:
- nomic-ai/cornstack-python-v1
- nomic-ai/cornstack-javascript-v1
- nomic-ai/cornstack-java-v1
- nomic-ai/cornstack-go-v1
- nomic-ai/cornstack-php-v1
- nomic-ai/cornstack-ruby-v1
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
---
# Nomic Embed Code: A State-of-the-Art Code Retriever
[Blog](https://www.nomic.ai/blog/posts/introducing-state-of-the-art-nomic-embed-code) | [Technical Report](https://arxiv.org/abs/2412.01007) | [AWS SageMaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-tpqidcj54zawi) | [Atlas Embedding and Unstructured Data Analytics Platform](https://atlas.nomic.ai)
`nomic-embed-code` is a state-of-the-art code embedding model that excels at code retrieval tasks:
- **High Performance**: Outperforms Voyage Code 3 and OpenAI Embed 3 Large on CodeSearchNet
- **Multilingual Code Support**: Trained for multiple programming languages (Python, Java, Ruby, PHP, JavaScript, Go)
- **Advanced Architecture**: 7B parameter code embedding model
- **Fully Open-Source**: Model weights, training data, and [evaluation code](https://github.com/gangiswag/cornstack/) released
| Model | Python | Java | Ruby | PHP | JavaScript | Go |
|-------|--------|------|------|-----|------------|-----|
| **Nomic Embed Code** | **81.7** | **80.5** | 81.8 | **72.3** | 77.1 | **93.8** |
| Voyage Code 3 | 80.8 | **80.5** | **84.6** | 71.7 | **79.2** | 93.2 |
| OpenAI Embed 3 Large | 70.8 | 72.9 | 75.3 | 59.6 | 68.1 | 87.6 |
| Nomic CodeRankEmbed-137M | 78.4 | 76.9 | 79.3 | 68.8 | 71.4 | 92.7 |
| CodeSage Large v2 (1B) | 74.2 | 72.3 | 76.7 | 65.2 | 72.5 | 84.6 |
| CodeSage Large (1B) | 70.8 | 70.2 | 71.9 | 61.3 | 69.5 | 83.7 |
| Qodo Embed 1 7B | 59.9 | 61.6 | 68.4 | 48.5 | 57.0 | 81.4 |
## Model Architecture
- **Total Parameters**: 7B
- **Training Approach**: Trained on the CoRNStack dataset with dual-consistency filtering and progressive hard negative mining
- **Supported Languages**: Python, Java, Ruby, PHP, JavaScript, and Go
## Usage Guide
### Installation
You can install the necessary dependencies with:
```bash
pip install transformers sentence-transformers torch
```
### Transformers
```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("nomic-ai/nomic-embed-code")
model = AutoModel.from_pretrained("nomic-ai/nomic-embed-code")
def last_token_pooling(hidden_states, attention_mask):
sequence_lengths = attention_mask.sum(-1) - 1
return hidden_states[torch.arange(hidden_states.shape[0]), sequence_lengths]
queries = ['Represent this query for searching relevant code: Calculate the n-th factorial']
codes = ['def fact(n):\n if n < 0:\n raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
code_snippets = queries + codes
encoded_input = tokenizer(code_snippets, padding=True, truncation=True, return_tensors='pt')
model.eval()
with torch.no_grad():
model_output = model(**encoded_input)[0]
embeddings = last_token_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
print(embeddings.shape)
similarity = F.cosine_similarity(embeddings[0], embeddings[1], dim=0)
print(similarity)
```
### SentenceTransformers
```python
from sentence_transformers import SentenceTransformer
queries = ['Calculate the n-th factorial']
code_snippets = ['def fact(n):\n if n < 0:\n raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
model = SentenceTransformer("nomic-ai/nomic-embed-code")
query_emb = model.encode(queries, prompt_name="query")
code_emb = model.encode(code_snippets)
similarity = model.similarity(query_emb[0], code_emb[0])
print(similarity)
```
### CoRNStack Dataset Curation
Starting with the deduplicated Stackv2, we create text-code pairs from function docstrings and respective code. We filtered out low-quality pairs where the docstring wasn't English, too short, or that contained URLs, HTML tags, or invalid characters. We additionally kept docstrings with text lengths of 256 tokens or longer to help the model learn long-range dependencies.

After the initial filtering, we used dual-consistency filtering to remove potentially noisy examples. We embed each docstring and code pair and compute the similarity between each docstring and every code example. We remove pairs from the dataset if the corresponding code example is not found in the top-2 most similar examples for a given docstring.
During training, we employ a novel curriculum-based hard negative mining strategy to ensure the model learns from challenging examples. We use a softmax-based sampling strategy to progressively sample hard negatives with increasing difficulty over time.
## Join the Nomic Community
- Nomic Embed Ecosystem: [https://www.nomic.ai/embed](https://www.nomic.ai/embed)
- Website: [https://nomic.ai](https://nomic.ai)
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
# Citation
If you find the model, dataset, or training code useful, please cite our work:
```bibtex
@misc{suresh2025cornstackhighqualitycontrastivedata,
title={CoRNStack: High-Quality Contrastive Data for Better Code Retrieval and Reranking},
author={Tarun Suresh and Revanth Gangi Reddy and Yifei Xu and Zach Nussbaum and Andriy Mulyar and Brandon Duderstadt and Heng Ji},
year={2025},
eprint={2412.01007},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.01007},
}
``` |