--- library_name: peft language: - ko license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer model-index: - name: Whisper Small ko results: [] --- # Whisper Small ko This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the custom dataset. It achieves the following results on the evaluation set: - Loss: 0.8070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 256 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5447 | 0.1471 | 10 | 0.8070 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0