File size: 4,068 Bytes
a740ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: peft
language:
- ko
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
model-index:
- name: Whisper Small ko
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small ko

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the custom dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2388

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 256
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.8865        | 0.0901 | 10   | 1.5498          |
| 0.8668        | 0.1802 | 20   | 1.4739          |
| 0.7179        | 0.2703 | 30   | 1.2411          |
| 0.3916        | 0.3604 | 40   | 0.8666          |
| 0.219         | 0.4505 | 50   | 0.7558          |
| 0.1545        | 0.5405 | 60   | 0.6752          |
| 0.1278        | 0.6306 | 70   | 0.5819          |
| 0.0983        | 0.7207 | 80   | 0.5394          |
| 0.0908        | 0.8108 | 90   | 0.5013          |
| 0.0718        | 0.9009 | 100  | 0.4740          |
| 0.0773        | 0.9910 | 110  | 0.4579          |
| 0.0665        | 1.0811 | 120  | 0.4430          |
| 0.0608        | 1.1712 | 130  | 0.4284          |
| 0.0612        | 1.2613 | 140  | 0.4136          |
| 0.0605        | 1.3514 | 150  | 0.4104          |
| 0.0632        | 1.4414 | 160  | 0.3857          |
| 0.0534        | 1.5315 | 170  | 0.3678          |
| 0.0527        | 1.6216 | 180  | 0.3584          |
| 0.0516        | 1.7117 | 190  | 0.3458          |
| 0.0467        | 1.8018 | 200  | 0.3373          |
| 0.0526        | 1.8919 | 210  | 0.3299          |
| 0.0363        | 1.9820 | 220  | 0.3280          |
| 0.0468        | 2.0721 | 230  | 0.3202          |
| 0.0473        | 2.1622 | 240  | 0.3152          |
| 0.0394        | 2.2523 | 250  | 0.3065          |
| 0.0356        | 2.3423 | 260  | 0.3009          |
| 0.042         | 2.4324 | 270  | 0.2934          |
| 0.042         | 2.5225 | 280  | 0.2911          |
| 0.0314        | 2.6126 | 290  | 0.2899          |
| 0.0397        | 2.7027 | 300  | 0.2817          |
| 0.0377        | 2.7928 | 310  | 0.2743          |
| 0.0412        | 2.8829 | 320  | 0.2695          |
| 0.0362        | 2.9730 | 330  | 0.2649          |
| 0.0321        | 3.0631 | 340  | 0.2589          |
| 0.0406        | 3.1532 | 350  | 0.2572          |
| 0.028         | 3.2432 | 360  | 0.2568          |
| 0.0345        | 3.3333 | 370  | 0.2568          |
| 0.0346        | 3.4234 | 380  | 0.2544          |
| 0.0391        | 3.5135 | 390  | 0.2513          |
| 0.0362        | 3.6036 | 400  | 0.2468          |
| 0.0304        | 3.6937 | 410  | 0.2446          |
| 0.032         | 3.7838 | 420  | 0.2428          |
| 0.0307        | 3.8739 | 430  | 0.2422          |
| 0.0301        | 3.9640 | 440  | 0.2414          |
| 0.0315        | 4.0541 | 450  | 0.2396          |
| 0.0336        | 4.1441 | 460  | 0.2396          |
| 0.024         | 4.2342 | 470  | 0.2396          |
| 0.0286        | 4.3243 | 480  | 0.2391          |
| 0.0289        | 4.4144 | 490  | 0.2389          |
| 0.0323        | 4.5045 | 500  | 0.2388          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0