andersjiang commited on
Commit
1621ab5
·
1 Parent(s): 8559b27

commit from

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /home/wentao/models--Qwen--Qwen-VL-Chat/snapshots/f57cfbd358cb56b710d963669ad1bcfb44cdcdd8
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
adapter_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "F:/kelperliu/docker_data/models--Qwen--Qwen-VL-Chat/snapshots/f57cfbd358cb56b710d963669ad1bcfb44cdcdd8",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layer_replication": null,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "w1",
23
+ "c_attn",
24
+ "attn.c_proj",
25
+ "w2"
26
+ ],
27
+ "task_type": "CAUSAL_LM",
28
+ "use_dora": false,
29
+ "use_rslora": false
30
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6639723fd37096e64df5cb6528157004ccad0b3704e5573bf74e4d9528d459bc
3
+ size 224428728
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
tokenization_qwen.py ADDED
@@ -0,0 +1,598 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import requests
12
+ import unicodedata
13
+ from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional
14
+
15
+ import tiktoken
16
+ import numpy as np
17
+ from PIL import Image
18
+ from PIL import ImageFont
19
+ from PIL import ImageDraw
20
+ from transformers import PreTrainedTokenizer, AddedToken
21
+ from transformers.utils import try_to_load_from_cache
22
+
23
+ import matplotlib.colors as mcolors
24
+ from matplotlib.font_manager import FontProperties
25
+
26
+ logger = logging.getLogger(__name__)
27
+
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
30
+ FONT_PATH = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf")
31
+ if FONT_PATH is None:
32
+ if not os.path.exists("SimSun.ttf"):
33
+ ttf = requests.get("https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun.ttf")
34
+ open("SimSun.ttf", "wb").write(ttf.content)
35
+ FONT_PATH = "SimSun.ttf"
36
+
37
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
38
+ ENDOFTEXT = "<|endoftext|>"
39
+ IMSTART = "<|im_start|>"
40
+ IMEND = "<|im_end|>"
41
+ # as the default behavior is changed to allow special tokens in
42
+ # regular texts, the surface forms of special tokens need to be
43
+ # as different as possible to minimize the impact
44
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
45
+ SPECIAL_TOKENS = (
46
+ ENDOFTEXT,
47
+ IMSTART,
48
+ IMEND,
49
+ ) + EXTRAS
50
+ IMG_TOKEN_SPAN = 256
51
+
52
+
53
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
54
+ with open(tiktoken_bpe_file, "rb") as f:
55
+ contents = f.read()
56
+ return {
57
+ base64.b64decode(token): int(rank)
58
+ for token, rank in (line.split() for line in contents.splitlines() if line)
59
+ }
60
+
61
+ def _list_find(
62
+ input_list: List[Any],
63
+ candidates: Tuple[Any],
64
+ start: int = 0,
65
+ ):
66
+ for i in range(start, len(input_list)):
67
+ if input_list[i] in candidates:
68
+ return i
69
+ return -1
70
+
71
+ def _replace_closed_tag(
72
+ input_tokens: List[Any],
73
+ start_tags: Union[Any, Tuple[Any]],
74
+ end_tags: Union[Any, Tuple[Any]],
75
+ inclusive_replace_func: Callable,
76
+ exclusive_replace_func: Callable = lambda x: x,
77
+ ):
78
+ if isinstance(start_tags, (str, int)):
79
+ start_tags = (start_tags,)
80
+ if isinstance(end_tags, (str, int)):
81
+ end_tags = (end_tags,)
82
+ assert len(start_tags) == len(end_tags)
83
+
84
+ output_tokens = []
85
+ end = 0
86
+ while True:
87
+ start = _list_find(input_tokens, start_tags, end)
88
+ if start == -1:
89
+ break
90
+ output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
91
+ tag_idx = start_tags.index(input_tokens[start])
92
+ end = _list_find(input_tokens, (end_tags[tag_idx],), start)
93
+ if end == -1:
94
+ raise ValueError("Unclosed image token")
95
+ output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1]))
96
+ end += 1
97
+ output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
98
+ return output_tokens
99
+
100
+ class QWenTokenizer(PreTrainedTokenizer):
101
+ """QWen tokenizer."""
102
+
103
+ vocab_files_names = VOCAB_FILES_NAMES
104
+
105
+ def __init__(
106
+ self,
107
+ vocab_file,
108
+ errors="replace",
109
+ image_start_tag='<img>',
110
+ image_end_tag='</img>',
111
+ image_pad_tag='<imgpad>',
112
+ ref_start_tag='<ref>',
113
+ ref_end_tag='</ref>',
114
+ box_start_tag='<box>',
115
+ box_end_tag='</box>',
116
+ quad_start_tag='<quad>',
117
+ quad_end_tag='</quad>',
118
+ **kwargs,
119
+ ):
120
+ # super().__init__(**kwargs)
121
+ self.image_start_tag = image_start_tag
122
+ self.image_end_tag = image_end_tag
123
+ self.image_pad_tag = image_pad_tag
124
+ self.ref_start_tag = ref_start_tag
125
+ self.ref_end_tag = ref_end_tag
126
+ self.box_start_tag = box_start_tag
127
+ self.box_end_tag = box_end_tag
128
+ self.quad_start_tag = quad_start_tag
129
+ self.quad_end_tag = quad_end_tag
130
+ self.IMAGE_ST = (
131
+ ref_start_tag, ref_end_tag,
132
+ box_start_tag, box_end_tag,
133
+ quad_start_tag, quad_end_tag,
134
+ image_start_tag, image_end_tag,
135
+ image_pad_tag
136
+ )
137
+ super().__init__(**kwargs)
138
+ self.errors = errors # how to handle errors in decoding
139
+
140
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
141
+ self.special_tokens = {
142
+ token: index
143
+ for index, token in enumerate(
144
+ SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
145
+ )
146
+ }
147
+ self.img_start_id = self.special_tokens[self.image_start_tag]
148
+ self.img_end_id = self.special_tokens[self.image_end_tag]
149
+ self.img_pad_id = self.special_tokens[self.image_pad_tag]
150
+ self.ref_start_id = self.special_tokens[self.ref_start_tag]
151
+ self.ref_end_id = self.special_tokens[self.ref_end_tag]
152
+ self.box_start_id = self.special_tokens[self.box_start_tag]
153
+ self.box_end_id = self.special_tokens[self.box_end_tag]
154
+ self.quad_start_id = self.special_tokens[self.quad_start_tag]
155
+ self.quad_end_id = self.special_tokens[self.quad_end_tag]
156
+ self.image_special_tokens = set([
157
+ self.ref_start_id, self.ref_end_id, self.box_start_id, self.box_end_id,
158
+ self.quad_start_id, self.quad_end_id,
159
+ ])
160
+
161
+ enc = tiktoken.Encoding(
162
+ "Qwen",
163
+ pat_str=PAT_STR,
164
+ mergeable_ranks=self.mergeable_ranks,
165
+ special_tokens=self.special_tokens,
166
+ )
167
+ assert (
168
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
169
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
170
+
171
+ self.decoder = {
172
+ v: k for k, v in self.mergeable_ranks.items()
173
+ } # type: dict[int, bytes|str]
174
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
175
+
176
+ self.tokenizer = enc # type: tiktoken.Encoding
177
+
178
+ self.eod_id = self.tokenizer.eot_token
179
+ self.im_start_id = self.special_tokens[IMSTART]
180
+ self.im_end_id = self.special_tokens[IMEND]
181
+
182
+ def __getstate__(self):
183
+ # for pickle lovers
184
+ state = self.__dict__.copy()
185
+ del state['tokenizer']
186
+ return state
187
+
188
+ def __setstate__(self, state):
189
+ # tokenizer is not python native; don't pass it; rebuild it
190
+ self.__dict__.update(state)
191
+ enc = tiktoken.Encoding(
192
+ "Qwen",
193
+ pat_str=PAT_STR,
194
+ mergeable_ranks=self.mergeable_ranks,
195
+ special_tokens=self.special_tokens,
196
+ )
197
+ self.tokenizer = enc
198
+
199
+
200
+ def __len__(self) -> int:
201
+ return self.tokenizer.n_vocab
202
+
203
+ def get_vocab(self) -> Dict[bytes, int]:
204
+ return self.mergeable_ranks
205
+
206
+ def convert_tokens_to_ids(
207
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
208
+ ) -> List[int]:
209
+ ids = []
210
+ if isinstance(tokens, (str, bytes)):
211
+ if tokens in self.special_tokens:
212
+ return self.special_tokens[tokens]
213
+ else:
214
+ return self.mergeable_ranks.get(tokens)
215
+ for token in tokens:
216
+ if token in self.special_tokens:
217
+ ids.append(self.special_tokens[token])
218
+ else:
219
+ ids.append(self.mergeable_ranks.get(token))
220
+ return ids
221
+
222
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
223
+ if not special_tokens and new_tokens:
224
+ raise ValueError('Adding regular tokens is not supported')
225
+ for token in new_tokens:
226
+ surface_form = token.content if isinstance(token, AddedToken) else token
227
+ if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
228
+ raise ValueError('Adding unknown special tokens is not supported')
229
+ return 0
230
+
231
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
232
+ """
233
+ Save only the vocabulary of the tokenizer (vocabulary).
234
+
235
+ Returns:
236
+ `Tuple(str)`: Paths to the files saved.
237
+ """
238
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
239
+ with open(file_path, "w", encoding="utf8") as w:
240
+ for k, v in self.mergeable_ranks.items():
241
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
242
+ w.write(line)
243
+ return (file_path,)
244
+
245
+ def tokenize(
246
+ self,
247
+ text: str,
248
+ allowed_special: Union[Set, str] = "all",
249
+ disallowed_special: Union[Collection, str] = (),
250
+ **kwargs,
251
+ ) -> List[Union[bytes, str]]:
252
+ """
253
+ Converts a string in a sequence of tokens.
254
+
255
+ Args:
256
+ text (`str`):
257
+ The sequence to be encoded.
258
+ allowed_special (`Literal["all"]` or `set`):
259
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
260
+ Default to "all".
261
+ disallowed_special (`Literal["all"]` or `Collection`):
262
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
263
+ Default to an empty tuple.
264
+
265
+ kwargs (additional keyword arguments, *optional*):
266
+ Will be passed to the underlying model specific encode method.
267
+
268
+ Returns:
269
+ `List[bytes|str]`: The list of tokens.
270
+ """
271
+ tokens = []
272
+ text = unicodedata.normalize("NFC", text)
273
+
274
+ # this implementation takes a detour: text -> token id -> token surface forms
275
+ for t in self.tokenizer.encode(
276
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
277
+ ):
278
+ tokens.append(self.decoder[t])
279
+
280
+ def _encode_imgurl(img_tokens):
281
+ assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
282
+ img_tokens = img_tokens[1:-1]
283
+ img_url = b''.join(img_tokens)
284
+ out_img_tokens = list(map(self.decoder.get, img_url))
285
+ if len(out_img_tokens) > IMG_TOKEN_SPAN:
286
+ raise ValueError("The content in {}..{} is too long".format(
287
+ self.image_start_tag, self.image_end_tag))
288
+ out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
289
+ out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
290
+ return out_img_tokens
291
+
292
+ return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
293
+
294
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
295
+ """
296
+ Converts a sequence of tokens in a single string.
297
+ """
298
+ text = ""
299
+ temp = b""
300
+ for t in tokens:
301
+ if isinstance(t, str):
302
+ if temp:
303
+ text += temp.decode("utf-8", errors=self.errors)
304
+ temp = b""
305
+ text += t
306
+ elif isinstance(t, bytes):
307
+ temp += t
308
+ else:
309
+ raise TypeError("token should only be of type types or str")
310
+ if temp:
311
+ text += temp.decode("utf-8", errors=self.errors)
312
+ return text
313
+
314
+ @property
315
+ def vocab_size(self):
316
+ return self.tokenizer.n_vocab
317
+
318
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
319
+ """Converts an id to a token, special tokens included"""
320
+ if index in self.decoder:
321
+ return self.decoder[index]
322
+ raise ValueError("unknown ids")
323
+
324
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
325
+ """Converts a token to an id using the vocab, special tokens included"""
326
+ if token in self.special_tokens:
327
+ return self.special_tokens[token]
328
+ if token in self.mergeable_ranks:
329
+ return self.mergeable_ranks[token]
330
+ raise ValueError("unknown token")
331
+
332
+ def _tokenize(self, text: str, **kwargs):
333
+ """
334
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
335
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
336
+
337
+ Do NOT take care of added tokens.
338
+ """
339
+ raise NotImplementedError
340
+
341
+ def _decode(
342
+ self,
343
+ token_ids: Union[int, List[int]],
344
+ skip_special_tokens: bool = False,
345
+ errors: str = None,
346
+ **kwargs,
347
+ ) -> str:
348
+ if isinstance(token_ids, int):
349
+ token_ids = [token_ids]
350
+
351
+ def _decode_imgurl(img_token_ids):
352
+ assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
353
+ img_token_ids = img_token_ids[1:-1]
354
+ img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)]
355
+ img_url = bytes(img_token_ids).decode('utf-8')
356
+ return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
357
+
358
+ token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
359
+
360
+ if skip_special_tokens:
361
+ if kwargs.get('keep_image_special', False):
362
+ token_ids = [i for i in token_ids if i < self.eod_id
363
+ or i in self.image_special_tokens]
364
+ else:
365
+ token_ids = [i for i in token_ids if i < self.eod_id]
366
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
367
+
368
+ def to_list_format(self, text: str):
369
+ text = unicodedata.normalize("NFC", text)
370
+ token_ids = self.tokenizer.encode(
371
+ text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
372
+
373
+ def _encode_vl_info(tokens):
374
+ if len(tokens) == 0:
375
+ return []
376
+ if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
377
+ key = 'image'
378
+ elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
379
+ key = 'ref'
380
+ elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
381
+ key = 'box'
382
+ elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
383
+ key = 'quad'
384
+ else:
385
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
386
+ return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
387
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
388
+ val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8')
389
+ return [{key: val}]
390
+
391
+ return _replace_closed_tag(
392
+ token_ids,
393
+ (self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
394
+ (self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
395
+ _encode_vl_info,
396
+ _encode_vl_info,
397
+ )
398
+
399
+ def from_list_format(self, list_format: List[Dict]):
400
+ text = ''
401
+ num_images = 0
402
+ for ele in list_format:
403
+ if 'image' in ele:
404
+ num_images += 1
405
+ text += f'Picture {num_images}: '
406
+ text += self.image_start_tag + ele['image'] + self.image_end_tag
407
+ text += '\n'
408
+ elif 'text' in ele:
409
+ text += ele['text']
410
+ elif 'box' in ele:
411
+ if 'ref' in ele:
412
+ text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
413
+ for box in ele['box']:
414
+ text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
415
+ else:
416
+ raise ValueError("Unsupport element: " + str(ele))
417
+ return text
418
+
419
+ def _fetch_latest_picture(self, response, history):
420
+ if history is None:
421
+ history = []
422
+ _history = history + [(response, None)]
423
+ for q, r in _history[::-1]:
424
+ for ele in self.to_list_format(q)[::-1]:
425
+ if 'image' in ele:
426
+ return ele['image']
427
+ return None
428
+
429
+ def _fetch_all_box_with_ref(self, text):
430
+ list_format = self.to_list_format(text)
431
+ output = []
432
+ for i, ele in enumerate(list_format):
433
+ if 'box' in ele:
434
+ bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
435
+ assert len(bbox) == 4
436
+ output.append({'box': bbox})
437
+ if i > 0 and 'ref' in list_format[i-1]:
438
+ output[-1]['ref'] = list_format[i-1]['ref'].strip()
439
+ return output
440
+
441
+ def draw_bbox_on_latest_picture(
442
+ self,
443
+ response,
444
+ history=None,
445
+ ) -> Optional[Image.Image]:
446
+ image = self._fetch_latest_picture(response, history)
447
+ if image is None:
448
+ return None
449
+ if image.startswith("http://") or image.startswith("https://"):
450
+ image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
451
+ h, w = image.height, image.width
452
+ else:
453
+ image = np.asarray(Image.open(image).convert("RGB"))
454
+ h, w = image.shape[0], image.shape[1]
455
+ visualizer = Visualizer(image)
456
+
457
+ boxes = self._fetch_all_box_with_ref(response)
458
+ if not boxes:
459
+ return None
460
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
461
+ for box in boxes:
462
+ if 'ref' in box: # random new color for new refexps
463
+ color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
464
+ x1, y1, x2, y2 = box['box']
465
+ x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
466
+ visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
467
+ if 'ref' in box:
468
+ visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
469
+ return visualizer.output
470
+
471
+
472
+ import colorsys
473
+ import logging
474
+ import math
475
+ import numpy as np
476
+ import matplotlib as mpl
477
+ import matplotlib.colors as mplc
478
+ import matplotlib.figure as mplfigure
479
+ import torch
480
+ from matplotlib.backends.backend_agg import FigureCanvasAgg
481
+ from PIL import Image
482
+ import random
483
+
484
+ logger = logging.getLogger(__name__)
485
+
486
+
487
+ class VisImage:
488
+ def __init__(self, img, scale=1.0):
489
+ self.img = img
490
+ self.scale = scale
491
+ self.width, self.height = img.shape[1], img.shape[0]
492
+ self._setup_figure(img)
493
+
494
+ def _setup_figure(self, img):
495
+ fig = mplfigure.Figure(frameon=False)
496
+ self.dpi = fig.get_dpi()
497
+ # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
498
+ # (https://github.com/matplotlib/matplotlib/issues/15363)
499
+ fig.set_size_inches(
500
+ (self.width * self.scale + 1e-2) / self.dpi,
501
+ (self.height * self.scale + 1e-2) / self.dpi,
502
+ )
503
+ self.canvas = FigureCanvasAgg(fig)
504
+ # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
505
+ ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
506
+ ax.axis("off")
507
+ self.fig = fig
508
+ self.ax = ax
509
+ self.reset_image(img)
510
+
511
+ def reset_image(self, img):
512
+ img = img.astype("uint8")
513
+ self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
514
+
515
+ def save(self, filepath):
516
+ self.fig.savefig(filepath)
517
+
518
+ def get_image(self):
519
+ canvas = self.canvas
520
+ s, (width, height) = canvas.print_to_buffer()
521
+
522
+ buffer = np.frombuffer(s, dtype="uint8")
523
+
524
+ img_rgba = buffer.reshape(height, width, 4)
525
+ rgb, alpha = np.split(img_rgba, [3], axis=2)
526
+ return rgb.astype("uint8")
527
+
528
+
529
+ class Visualizer:
530
+ def __init__(self, img_rgb, metadata=None, scale=1.0):
531
+ self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
532
+ self.font_path = FONT_PATH
533
+ self.output = VisImage(self.img, scale=scale)
534
+ self.cpu_device = torch.device("cpu")
535
+
536
+ # too small texts are useless, therefore clamp to 14
537
+ self._default_font_size = max(
538
+ np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
539
+ )
540
+
541
+ def draw_text(
542
+ self,
543
+ text,
544
+ position,
545
+ *,
546
+ font_size=None,
547
+ color="g",
548
+ horizontal_alignment="center",
549
+ rotation=0,
550
+ ):
551
+ if not font_size:
552
+ font_size = self._default_font_size
553
+
554
+ # since the text background is dark, we don't want the text to be dark
555
+ color = np.maximum(list(mplc.to_rgb(color)), 0.2)
556
+ color[np.argmax(color)] = max(0.8, np.max(color))
557
+
558
+ x, y = position
559
+ self.output.ax.text(
560
+ x,
561
+ y,
562
+ text,
563
+ size=font_size * self.output.scale,
564
+ fontproperties=FontProperties(fname=self.font_path),
565
+ bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
566
+ verticalalignment="top",
567
+ horizontalalignment=horizontal_alignment,
568
+ color=color,
569
+ zorder=10,
570
+ rotation=rotation,
571
+ )
572
+ return self.output
573
+
574
+ def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
575
+
576
+ x0, y0, x1, y1 = box_coord
577
+ width = x1 - x0
578
+ height = y1 - y0
579
+
580
+ linewidth = max(self._default_font_size / 4, 1)
581
+
582
+ self.output.ax.add_patch(
583
+ mpl.patches.Rectangle(
584
+ (x0, y0),
585
+ width,
586
+ height,
587
+ fill=False,
588
+ edgecolor=edge_color,
589
+ linewidth=linewidth * self.output.scale,
590
+ alpha=alpha,
591
+ linestyle=line_style,
592
+ )
593
+ )
594
+ return self.output
595
+
596
+ def get_output(self):
597
+
598
+ return self.output
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 512,
11
+ "pad_token": "<|endoftext|>",
12
+ "padding_side": "right",
13
+ "tokenizer_class": "QWenTokenizer"
14
+ }
trainer_state.json ADDED
@@ -0,0 +1,3630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 600,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 1.6666666666666667e-06,
14
+ "loss": 0.2396,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 3.3333333333333333e-06,
20
+ "loss": 0.2073,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.05,
25
+ "learning_rate": 5e-06,
26
+ "loss": 0.1975,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.07,
31
+ "learning_rate": 6.666666666666667e-06,
32
+ "loss": 0.2081,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.08,
37
+ "learning_rate": 8.333333333333334e-06,
38
+ "loss": 0.1832,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.1,
43
+ "learning_rate": 1e-05,
44
+ "loss": 0.2585,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.12,
49
+ "learning_rate": 9.999930069625869e-06,
50
+ "loss": 0.2094,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.13,
55
+ "learning_rate": 9.999720280459576e-06,
56
+ "loss": 0.163,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.15,
61
+ "learning_rate": 9.999370638369377e-06,
62
+ "loss": 0.2687,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.17,
67
+ "learning_rate": 9.99888115313551e-06,
68
+ "loss": 0.2199,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.18,
73
+ "learning_rate": 9.998251838449932e-06,
74
+ "loss": 0.254,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.2,
79
+ "learning_rate": 9.997482711915926e-06,
80
+ "loss": 0.185,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.22,
85
+ "learning_rate": 9.996573795047616e-06,
86
+ "loss": 0.1471,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.23,
91
+ "learning_rate": 9.99552511326936e-06,
92
+ "loss": 0.2113,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.25,
97
+ "learning_rate": 9.994336695915041e-06,
98
+ "loss": 0.1411,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.27,
103
+ "learning_rate": 9.993008576227248e-06,
104
+ "loss": 0.215,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.28,
109
+ "learning_rate": 9.991540791356342e-06,
110
+ "loss": 0.2258,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.3,
115
+ "learning_rate": 9.989933382359423e-06,
116
+ "loss": 0.1529,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.32,
121
+ "learning_rate": 9.988186394199175e-06,
122
+ "loss": 0.1812,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.33,
127
+ "learning_rate": 9.986299875742612e-06,
128
+ "loss": 0.2054,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.35,
133
+ "learning_rate": 9.984273879759713e-06,
134
+ "loss": 0.207,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.37,
139
+ "learning_rate": 9.982108462921938e-06,
140
+ "loss": 0.1292,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.38,
145
+ "learning_rate": 9.979803685800651e-06,
146
+ "loss": 0.1894,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.4,
151
+ "learning_rate": 9.977359612865424e-06,
152
+ "loss": 0.1512,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.42,
157
+ "learning_rate": 9.97477631248223e-06,
158
+ "loss": 0.2282,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.43,
163
+ "learning_rate": 9.972053856911534e-06,
164
+ "loss": 0.1739,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.45,
169
+ "learning_rate": 9.969192322306271e-06,
170
+ "loss": 0.1747,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.47,
175
+ "learning_rate": 9.966191788709716e-06,
176
+ "loss": 0.1059,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.48,
181
+ "learning_rate": 9.963052340053242e-06,
182
+ "loss": 0.2257,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.5,
187
+ "learning_rate": 9.959774064153977e-06,
188
+ "loss": 0.1449,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.52,
193
+ "learning_rate": 9.956357052712347e-06,
194
+ "loss": 0.1357,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.53,
199
+ "learning_rate": 9.952801401309504e-06,
200
+ "loss": 0.1424,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.55,
205
+ "learning_rate": 9.949107209404664e-06,
206
+ "loss": 0.1842,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.57,
211
+ "learning_rate": 9.945274580332316e-06,
212
+ "loss": 0.1781,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.58,
217
+ "learning_rate": 9.941303621299332e-06,
218
+ "loss": 0.1825,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.6,
223
+ "learning_rate": 9.937194443381972e-06,
224
+ "loss": 0.1603,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.62,
229
+ "learning_rate": 9.932947161522779e-06,
230
+ "loss": 0.1809,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.63,
235
+ "learning_rate": 9.928561894527354e-06,
236
+ "loss": 0.188,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.65,
241
+ "learning_rate": 9.924038765061042e-06,
242
+ "loss": 0.112,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.67,
247
+ "learning_rate": 9.919377899645497e-06,
248
+ "loss": 0.1943,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.68,
253
+ "learning_rate": 9.914579428655144e-06,
254
+ "loss": 0.13,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.7,
259
+ "learning_rate": 9.909643486313533e-06,
260
+ "loss": 0.14,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.72,
265
+ "learning_rate": 9.904570210689584e-06,
266
+ "loss": 0.1408,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.73,
271
+ "learning_rate": 9.899359743693715e-06,
272
+ "loss": 0.1618,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.75,
277
+ "learning_rate": 9.894012231073895e-06,
278
+ "loss": 0.1458,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.77,
283
+ "learning_rate": 9.888527822411543e-06,
284
+ "loss": 0.1471,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.78,
289
+ "learning_rate": 9.882906671117363e-06,
290
+ "loss": 0.1468,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.8,
295
+ "learning_rate": 9.877148934427037e-06,
296
+ "loss": 0.1638,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.82,
301
+ "learning_rate": 9.871254773396837e-06,
302
+ "loss": 0.1769,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.83,
307
+ "learning_rate": 9.86522435289912e-06,
308
+ "loss": 0.1476,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.85,
313
+ "learning_rate": 9.859057841617709e-06,
314
+ "loss": 0.1301,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.87,
319
+ "learning_rate": 9.85275541204318e-06,
320
+ "loss": 0.1658,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.88,
325
+ "learning_rate": 9.84631724046804e-06,
326
+ "loss": 0.1639,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.9,
331
+ "learning_rate": 9.839743506981783e-06,
332
+ "loss": 0.1746,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.92,
337
+ "learning_rate": 9.833034395465866e-06,
338
+ "loss": 0.1701,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.93,
343
+ "learning_rate": 9.826190093588564e-06,
344
+ "loss": 0.1561,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.95,
349
+ "learning_rate": 9.819210792799711e-06,
350
+ "loss": 0.1779,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.97,
355
+ "learning_rate": 9.812096688325354e-06,
356
+ "loss": 0.1498,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.98,
361
+ "learning_rate": 9.804847979162286e-06,
362
+ "loss": 0.1712,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 1.0,
367
+ "learning_rate": 9.797464868072489e-06,
368
+ "loss": 0.1423,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 1.02,
373
+ "learning_rate": 9.789947561577445e-06,
374
+ "loss": 0.1548,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 1.03,
379
+ "learning_rate": 9.78229626995238e-06,
380
+ "loss": 0.143,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 1.05,
385
+ "learning_rate": 9.774511207220369e-06,
386
+ "loss": 0.1465,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 1.07,
391
+ "learning_rate": 9.766592591146353e-06,
392
+ "loss": 0.1667,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 1.08,
397
+ "learning_rate": 9.758540643231041e-06,
398
+ "loss": 0.1508,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 1.1,
403
+ "learning_rate": 9.750355588704728e-06,
404
+ "loss": 0.1483,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 1.12,
409
+ "learning_rate": 9.742037656520984e-06,
410
+ "loss": 0.1231,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 1.13,
415
+ "learning_rate": 9.733587079350254e-06,
416
+ "loss": 0.1446,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 1.15,
421
+ "learning_rate": 9.725004093573343e-06,
422
+ "loss": 0.1363,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 1.17,
427
+ "learning_rate": 9.716288939274818e-06,
428
+ "loss": 0.1272,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 1.18,
433
+ "learning_rate": 9.707441860236278e-06,
434
+ "loss": 0.1652,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 1.2,
439
+ "learning_rate": 9.698463103929542e-06,
440
+ "loss": 0.1762,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 1.22,
445
+ "learning_rate": 9.689352921509725e-06,
446
+ "loss": 0.1773,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 1.23,
451
+ "learning_rate": 9.680111567808212e-06,
452
+ "loss": 0.1138,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 1.25,
457
+ "learning_rate": 9.670739301325534e-06,
458
+ "loss": 0.1497,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 1.27,
463
+ "learning_rate": 9.66123638422413e-06,
464
+ "loss": 0.1163,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 1.28,
469
+ "learning_rate": 9.651603082321019e-06,
470
+ "loss": 0.1411,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 1.3,
475
+ "learning_rate": 9.641839665080363e-06,
476
+ "loss": 0.1309,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 1.32,
481
+ "learning_rate": 9.631946405605932e-06,
482
+ "loss": 0.1285,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 1.33,
487
+ "learning_rate": 9.621923580633462e-06,
488
+ "loss": 0.1472,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 1.35,
493
+ "learning_rate": 9.611771470522908e-06,
494
+ "loss": 0.1654,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 1.37,
499
+ "learning_rate": 9.601490359250616e-06,
500
+ "loss": 0.1636,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 1.38,
505
+ "learning_rate": 9.591080534401371e-06,
506
+ "loss": 0.1448,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 1.4,
511
+ "learning_rate": 9.580542287160348e-06,
512
+ "loss": 0.1302,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 1.42,
517
+ "learning_rate": 9.56987591230498e-06,
518
+ "loss": 0.1363,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 1.43,
523
+ "learning_rate": 9.559081708196696e-06,
524
+ "loss": 0.1276,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 1.45,
529
+ "learning_rate": 9.548159976772593e-06,
530
+ "loss": 0.1095,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 1.47,
535
+ "learning_rate": 9.537111023536973e-06,
536
+ "loss": 0.1052,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 1.48,
541
+ "learning_rate": 9.525935157552813e-06,
542
+ "loss": 0.1609,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 1.5,
547
+ "learning_rate": 9.514632691433108e-06,
548
+ "loss": 0.1164,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 1.52,
553
+ "learning_rate": 9.503203941332128e-06,
554
+ "loss": 0.1277,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 1.53,
559
+ "learning_rate": 9.491649226936586e-06,
560
+ "loss": 0.13,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 1.55,
565
+ "learning_rate": 9.47996887145668e-06,
566
+ "loss": 0.1407,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 1.57,
571
+ "learning_rate": 9.468163201617063e-06,
572
+ "loss": 0.1278,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 1.58,
577
+ "learning_rate": 9.456232547647695e-06,
578
+ "loss": 0.1114,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 1.6,
583
+ "learning_rate": 9.444177243274619e-06,
584
+ "loss": 0.1358,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 1.62,
589
+ "learning_rate": 9.43199762571061e-06,
590
+ "loss": 0.1187,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 1.63,
595
+ "learning_rate": 9.419694035645753e-06,
596
+ "loss": 0.1518,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 1.65,
601
+ "learning_rate": 9.40726681723791e-06,
602
+ "loss": 0.1261,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 1.67,
607
+ "learning_rate": 9.394716318103098e-06,
608
+ "loss": 0.1149,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 1.68,
613
+ "learning_rate": 9.382042889305754e-06,
614
+ "loss": 0.124,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 1.7,
619
+ "learning_rate": 9.369246885348926e-06,
620
+ "loss": 0.1344,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 1.72,
625
+ "learning_rate": 9.35632866416435e-06,
626
+ "loss": 0.0972,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 1.73,
631
+ "learning_rate": 9.343288587102444e-06,
632
+ "loss": 0.1138,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 1.75,
637
+ "learning_rate": 9.330127018922195e-06,
638
+ "loss": 0.1479,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 1.77,
643
+ "learning_rate": 9.316844327780955e-06,
644
+ "loss": 0.1345,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 1.78,
649
+ "learning_rate": 9.303440885224153e-06,
650
+ "loss": 0.1184,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 1.8,
655
+ "learning_rate": 9.289917066174887e-06,
656
+ "loss": 0.0922,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 1.82,
661
+ "learning_rate": 9.276273248923446e-06,
662
+ "loss": 0.096,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 1.83,
667
+ "learning_rate": 9.262509815116732e-06,
668
+ "loss": 0.1213,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 1.85,
673
+ "learning_rate": 9.248627149747573e-06,
674
+ "loss": 0.1172,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 1.87,
679
+ "learning_rate": 9.234625641143962e-06,
680
+ "loss": 0.1318,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 1.88,
685
+ "learning_rate": 9.220505680958194e-06,
686
+ "loss": 0.1044,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 1.9,
691
+ "learning_rate": 9.206267664155906e-06,
692
+ "loss": 0.131,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 1.92,
697
+ "learning_rate": 9.191911989005038e-06,
698
+ "loss": 0.1391,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 1.93,
703
+ "learning_rate": 9.177439057064684e-06,
704
+ "loss": 0.1194,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 1.95,
709
+ "learning_rate": 9.162849273173857e-06,
710
+ "loss": 0.1123,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 1.97,
715
+ "learning_rate": 9.148143045440181e-06,
716
+ "loss": 0.1444,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 1.98,
721
+ "learning_rate": 9.133320785228457e-06,
722
+ "loss": 0.121,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 2.0,
727
+ "learning_rate": 9.118382907149164e-06,
728
+ "loss": 0.1261,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 2.02,
733
+ "learning_rate": 9.103329829046866e-06,
734
+ "loss": 0.1203,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 2.03,
739
+ "learning_rate": 9.088161971988517e-06,
740
+ "loss": 0.108,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 2.05,
745
+ "learning_rate": 9.07287976025168e-06,
746
+ "loss": 0.0694,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 2.07,
751
+ "learning_rate": 9.057483621312671e-06,
752
+ "loss": 0.0995,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 2.08,
757
+ "learning_rate": 9.041973985834595e-06,
758
+ "loss": 0.1043,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 2.1,
763
+ "learning_rate": 9.026351287655294e-06,
764
+ "loss": 0.1378,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 2.12,
769
+ "learning_rate": 9.01061596377522e-06,
770
+ "loss": 0.1135,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 2.13,
775
+ "learning_rate": 8.994768454345207e-06,
776
+ "loss": 0.1234,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 2.15,
781
+ "learning_rate": 8.978809202654161e-06,
782
+ "loss": 0.118,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 2.17,
787
+ "learning_rate": 8.96273865511666e-06,
788
+ "loss": 0.1136,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 2.18,
793
+ "learning_rate": 8.94655726126046e-06,
794
+ "loss": 0.0982,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 2.2,
799
+ "learning_rate": 8.930265473713939e-06,
800
+ "loss": 0.079,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 2.22,
805
+ "learning_rate": 8.91386374819341e-06,
806
+ "loss": 0.0974,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 2.23,
811
+ "learning_rate": 8.897352543490396e-06,
812
+ "loss": 0.1122,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 2.25,
817
+ "learning_rate": 8.880732321458785e-06,
818
+ "loss": 0.0958,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 2.27,
823
+ "learning_rate": 8.864003547001916e-06,
824
+ "loss": 0.0825,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 2.28,
829
+ "learning_rate": 8.847166688059572e-06,
830
+ "loss": 0.1226,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 2.3,
835
+ "learning_rate": 8.83022221559489e-06,
836
+ "loss": 0.1335,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 2.32,
841
+ "learning_rate": 8.81317060358119e-06,
842
+ "loss": 0.0939,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 2.33,
847
+ "learning_rate": 8.796012328988716e-06,
848
+ "loss": 0.125,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 2.35,
853
+ "learning_rate": 8.778747871771293e-06,
854
+ "loss": 0.114,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 2.37,
859
+ "learning_rate": 8.7613777148529e-06,
860
+ "loss": 0.0861,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 2.38,
865
+ "learning_rate": 8.743902344114163e-06,
866
+ "loss": 0.1096,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 2.4,
871
+ "learning_rate": 8.726322248378775e-06,
872
+ "loss": 0.0803,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 2.42,
877
+ "learning_rate": 8.708637919399798e-06,
878
+ "loss": 0.0833,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 2.43,
883
+ "learning_rate": 8.690849851845933e-06,
884
+ "loss": 0.0882,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 2.45,
889
+ "learning_rate": 8.672958543287666e-06,
890
+ "loss": 0.1513,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 2.47,
895
+ "learning_rate": 8.65496449418336e-06,
896
+ "loss": 0.0996,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 2.48,
901
+ "learning_rate": 8.636868207865244e-06,
902
+ "loss": 0.136,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 2.5,
907
+ "learning_rate": 8.61867019052535e-06,
908
+ "loss": 0.0888,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 2.52,
913
+ "learning_rate": 8.600370951201345e-06,
914
+ "loss": 0.1044,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 2.53,
919
+ "learning_rate": 8.581971001762287e-06,
920
+ "loss": 0.0964,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 2.55,
925
+ "learning_rate": 8.563470856894316e-06,
926
+ "loss": 0.0946,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 2.57,
931
+ "learning_rate": 8.54487103408625e-06,
932
+ "loss": 0.1264,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 2.58,
937
+ "learning_rate": 8.526172053615122e-06,
938
+ "loss": 0.1173,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 2.6,
943
+ "learning_rate": 8.507374438531606e-06,
944
+ "loss": 0.1075,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 2.62,
949
+ "learning_rate": 8.48847871464541e-06,
950
+ "loss": 0.0625,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 2.63,
955
+ "learning_rate": 8.469485410510545e-06,
956
+ "loss": 0.0951,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 2.65,
961
+ "learning_rate": 8.450395057410561e-06,
962
+ "loss": 0.1103,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 2.67,
967
+ "learning_rate": 8.43120818934367e-06,
968
+ "loss": 0.0794,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 2.68,
973
+ "learning_rate": 8.411925343007815e-06,
974
+ "loss": 0.0699,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 2.7,
979
+ "learning_rate": 8.392547057785662e-06,
980
+ "loss": 0.1138,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 2.72,
985
+ "learning_rate": 8.373073875729504e-06,
986
+ "loss": 0.1351,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 2.73,
991
+ "learning_rate": 8.353506341546106e-06,
992
+ "loss": 0.0853,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 2.75,
997
+ "learning_rate": 8.33384500258146e-06,
998
+ "loss": 0.1151,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 2.77,
1003
+ "learning_rate": 8.314090408805481e-06,
1004
+ "loss": 0.043,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 2.78,
1009
+ "learning_rate": 8.294243112796625e-06,
1010
+ "loss": 0.0859,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 2.8,
1015
+ "learning_rate": 8.274303669726427e-06,
1016
+ "loss": 0.0728,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 2.82,
1021
+ "learning_rate": 8.254272637343968e-06,
1022
+ "loss": 0.0809,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 2.83,
1027
+ "learning_rate": 8.234150575960288e-06,
1028
+ "loss": 0.0699,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 2.85,
1033
+ "learning_rate": 8.213938048432697e-06,
1034
+ "loss": 0.1079,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 2.87,
1039
+ "learning_rate": 8.193635620149041e-06,
1040
+ "loss": 0.0708,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 2.88,
1045
+ "learning_rate": 8.173243859011881e-06,
1046
+ "loss": 0.1004,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 2.9,
1051
+ "learning_rate": 8.152763335422612e-06,
1052
+ "loss": 0.0615,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 2.92,
1057
+ "learning_rate": 8.132194622265508e-06,
1058
+ "loss": 0.089,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 2.93,
1063
+ "learning_rate": 8.111538294891684e-06,
1064
+ "loss": 0.1052,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 2.95,
1069
+ "learning_rate": 8.090794931103026e-06,
1070
+ "loss": 0.0871,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 2.97,
1075
+ "learning_rate": 8.06996511113601e-06,
1076
+ "loss": 0.1042,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 2.98,
1081
+ "learning_rate": 8.049049417645478e-06,
1082
+ "loss": 0.0477,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 3.0,
1087
+ "learning_rate": 8.028048435688333e-06,
1088
+ "loss": 0.0636,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 3.02,
1093
+ "learning_rate": 8.006962752707193e-06,
1094
+ "loss": 0.0742,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 3.03,
1099
+ "learning_rate": 7.985792958513932e-06,
1100
+ "loss": 0.0574,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 3.05,
1105
+ "learning_rate": 7.964539645273204e-06,
1106
+ "loss": 0.0414,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 3.07,
1111
+ "learning_rate": 7.943203407485864e-06,
1112
+ "loss": 0.0505,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 3.08,
1117
+ "learning_rate": 7.921784841972355e-06,
1118
+ "loss": 0.0961,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 3.1,
1123
+ "learning_rate": 7.900284547855992e-06,
1124
+ "loss": 0.0781,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 3.12,
1129
+ "learning_rate": 7.87870312654622e-06,
1130
+ "loss": 0.0598,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 3.13,
1135
+ "learning_rate": 7.857041181721788e-06,
1136
+ "loss": 0.0832,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 3.15,
1141
+ "learning_rate": 7.835299319313854e-06,
1142
+ "loss": 0.049,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 3.17,
1147
+ "learning_rate": 7.813478147489052e-06,
1148
+ "loss": 0.056,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 3.18,
1153
+ "learning_rate": 7.791578276632461e-06,
1154
+ "loss": 0.0552,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 3.2,
1159
+ "learning_rate": 7.769600319330553e-06,
1160
+ "loss": 0.0669,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 3.22,
1165
+ "learning_rate": 7.747544890354031e-06,
1166
+ "loss": 0.0643,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 3.23,
1171
+ "learning_rate": 7.725412606640658e-06,
1172
+ "loss": 0.0586,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 3.25,
1177
+ "learning_rate": 7.703204087277989e-06,
1178
+ "loss": 0.0892,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 3.27,
1183
+ "learning_rate": 7.680919953486047e-06,
1184
+ "loss": 0.0879,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 3.28,
1189
+ "learning_rate": 7.65856082859996e-06,
1190
+ "loss": 0.0763,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 3.3,
1195
+ "learning_rate": 7.636127338052513e-06,
1196
+ "loss": 0.072,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 3.32,
1201
+ "learning_rate": 7.613620109356663e-06,
1202
+ "loss": 0.0738,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 3.33,
1207
+ "learning_rate": 7.5910397720879785e-06,
1208
+ "loss": 0.0829,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 3.35,
1213
+ "learning_rate": 7.568386957867033e-06,
1214
+ "loss": 0.0622,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 3.37,
1219
+ "learning_rate": 7.545662300341736e-06,
1220
+ "loss": 0.0665,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 3.38,
1225
+ "learning_rate": 7.522866435169606e-06,
1226
+ "loss": 0.0769,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 3.4,
1231
+ "learning_rate": 7.500000000000001e-06,
1232
+ "loss": 0.0253,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 3.42,
1237
+ "learning_rate": 7.477063634456263e-06,
1238
+ "loss": 0.0213,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 3.43,
1243
+ "learning_rate": 7.454057980117842e-06,
1244
+ "loss": 0.0702,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 3.45,
1249
+ "learning_rate": 7.430983680502344e-06,
1250
+ "loss": 0.0982,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 3.47,
1255
+ "learning_rate": 7.407841381047533e-06,
1256
+ "loss": 0.0552,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 3.48,
1261
+ "learning_rate": 7.38463172909327e-06,
1262
+ "loss": 0.0744,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 3.5,
1267
+ "learning_rate": 7.361355373863415e-06,
1268
+ "loss": 0.0463,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 3.52,
1273
+ "learning_rate": 7.3380129664476574e-06,
1274
+ "loss": 0.0986,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 3.53,
1279
+ "learning_rate": 7.314605159783313e-06,
1280
+ "loss": 0.0715,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 3.55,
1285
+ "learning_rate": 7.291132608637053e-06,
1286
+ "loss": 0.05,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 3.57,
1291
+ "learning_rate": 7.2675959695865896e-06,
1292
+ "loss": 0.046,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 3.58,
1297
+ "learning_rate": 7.243995901002312e-06,
1298
+ "loss": 0.051,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 3.6,
1303
+ "learning_rate": 7.2203330630288714e-06,
1304
+ "loss": 0.0274,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 3.62,
1309
+ "learning_rate": 7.196608117566714e-06,
1310
+ "loss": 0.0327,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 3.63,
1315
+ "learning_rate": 7.172821728253563e-06,
1316
+ "loss": 0.0467,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 3.65,
1321
+ "learning_rate": 7.148974560445859e-06,
1322
+ "loss": 0.0435,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 3.67,
1327
+ "learning_rate": 7.1250672812001505e-06,
1328
+ "loss": 0.0794,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 3.68,
1333
+ "learning_rate": 7.1011005592544314e-06,
1334
+ "loss": 0.0072,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 3.7,
1339
+ "learning_rate": 7.0770750650094335e-06,
1340
+ "loss": 0.0974,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 3.72,
1345
+ "learning_rate": 7.0529914705098755e-06,
1346
+ "loss": 0.0889,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 3.73,
1351
+ "learning_rate": 7.02885044942567e-06,
1352
+ "loss": 0.0819,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 3.75,
1357
+ "learning_rate": 7.004652677033069e-06,
1358
+ "loss": 0.0599,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 3.77,
1363
+ "learning_rate": 6.980398830195785e-06,
1364
+ "loss": 0.0198,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 3.78,
1369
+ "learning_rate": 6.95608958734605e-06,
1370
+ "loss": 0.0512,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 3.8,
1375
+ "learning_rate": 6.931725628465643e-06,
1376
+ "loss": 0.0743,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 3.82,
1381
+ "learning_rate": 6.90730763506687e-06,
1382
+ "loss": 0.0887,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 3.83,
1387
+ "learning_rate": 6.882836290173493e-06,
1388
+ "loss": 0.0337,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 3.85,
1393
+ "learning_rate": 6.858312278301638e-06,
1394
+ "loss": 0.0356,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 3.87,
1399
+ "learning_rate": 6.833736285440632e-06,
1400
+ "loss": 0.0387,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 3.88,
1405
+ "learning_rate": 6.809108999033825e-06,
1406
+ "loss": 0.027,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 3.9,
1411
+ "learning_rate": 6.78443110795936e-06,
1412
+ "loss": 0.0262,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 3.92,
1417
+ "learning_rate": 6.759703302510898e-06,
1418
+ "loss": 0.0314,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 3.93,
1423
+ "learning_rate": 6.734926274378313e-06,
1424
+ "loss": 0.0691,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 3.95,
1429
+ "learning_rate": 6.710100716628345e-06,
1430
+ "loss": 0.0528,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 3.97,
1435
+ "learning_rate": 6.685227323685209e-06,
1436
+ "loss": 0.0522,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 3.98,
1441
+ "learning_rate": 6.660306791311177e-06,
1442
+ "loss": 0.052,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 4.0,
1447
+ "learning_rate": 6.635339816587109e-06,
1448
+ "loss": 0.0454,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 4.02,
1453
+ "learning_rate": 6.610327097892959e-06,
1454
+ "loss": 0.0161,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 4.03,
1459
+ "learning_rate": 6.5852693348882345e-06,
1460
+ "loss": 0.0154,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 4.05,
1465
+ "learning_rate": 6.560167228492436e-06,
1466
+ "loss": 0.0682,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 4.07,
1471
+ "learning_rate": 6.535021480865439e-06,
1472
+ "loss": 0.0074,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 4.08,
1477
+ "learning_rate": 6.5098327953878585e-06,
1478
+ "loss": 0.0618,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 4.1,
1483
+ "learning_rate": 6.484601876641375e-06,
1484
+ "loss": 0.0378,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 4.12,
1489
+ "learning_rate": 6.459329430389023e-06,
1490
+ "loss": 0.0436,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 4.13,
1495
+ "learning_rate": 6.434016163555452e-06,
1496
+ "loss": 0.0143,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 4.15,
1501
+ "learning_rate": 6.408662784207149e-06,
1502
+ "loss": 0.0446,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 4.17,
1507
+ "learning_rate": 6.383270001532636e-06,
1508
+ "loss": 0.0124,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 4.18,
1513
+ "learning_rate": 6.357838525822629e-06,
1514
+ "loss": 0.043,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 4.2,
1519
+ "learning_rate": 6.332369068450175e-06,
1520
+ "loss": 0.0243,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 4.22,
1525
+ "learning_rate": 6.306862341850746e-06,
1526
+ "loss": 0.0199,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 4.23,
1531
+ "learning_rate": 6.2813190595023135e-06,
1532
+ "loss": 0.0609,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 4.25,
1537
+ "learning_rate": 6.255739935905396e-06,
1538
+ "loss": 0.0373,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 4.27,
1543
+ "learning_rate": 6.230125686563068e-06,
1544
+ "loss": 0.0216,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 4.28,
1549
+ "learning_rate": 6.204477027960942e-06,
1550
+ "loss": 0.0485,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 4.3,
1555
+ "learning_rate": 6.178794677547138e-06,
1556
+ "loss": 0.0184,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 4.32,
1561
+ "learning_rate": 6.153079353712201e-06,
1562
+ "loss": 0.0303,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 4.33,
1567
+ "learning_rate": 6.127331775769023e-06,
1568
+ "loss": 0.048,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 4.35,
1573
+ "learning_rate": 6.101552663932704e-06,
1574
+ "loss": 0.0352,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 4.37,
1579
+ "learning_rate": 6.07574273930042e-06,
1580
+ "loss": 0.0195,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 4.38,
1585
+ "learning_rate": 6.049902723831243e-06,
1586
+ "loss": 0.0322,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 4.4,
1591
+ "learning_rate": 6.024033340325954e-06,
1592
+ "loss": 0.0385,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 4.42,
1597
+ "learning_rate": 5.998135312406821e-06,
1598
+ "loss": 0.0678,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 4.43,
1603
+ "learning_rate": 5.972209364497355e-06,
1604
+ "loss": 0.0341,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 4.45,
1609
+ "learning_rate": 5.946256221802052e-06,
1610
+ "loss": 0.019,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 4.47,
1615
+ "learning_rate": 5.920276610286102e-06,
1616
+ "loss": 0.0372,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 4.48,
1621
+ "learning_rate": 5.894271256655089e-06,
1622
+ "loss": 0.0278,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 4.5,
1627
+ "learning_rate": 5.8682408883346535e-06,
1628
+ "loss": 0.0079,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 4.52,
1633
+ "learning_rate": 5.842186233450153e-06,
1634
+ "loss": 0.0168,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 4.53,
1639
+ "learning_rate": 5.816108020806297e-06,
1640
+ "loss": 0.0289,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 4.55,
1645
+ "learning_rate": 5.79000697986675e-06,
1646
+ "loss": 0.0483,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 4.57,
1651
+ "learning_rate": 5.763883840733736e-06,
1652
+ "loss": 0.019,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 4.58,
1657
+ "learning_rate": 5.737739334127611e-06,
1658
+ "loss": 0.0182,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 4.6,
1663
+ "learning_rate": 5.711574191366427e-06,
1664
+ "loss": 0.0339,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 4.62,
1669
+ "learning_rate": 5.685389144345474e-06,
1670
+ "loss": 0.012,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 4.63,
1675
+ "learning_rate": 5.659184925516802e-06,
1676
+ "loss": 0.0154,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 4.65,
1681
+ "learning_rate": 5.632962267868747e-06,
1682
+ "loss": 0.0178,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 4.67,
1687
+ "learning_rate": 5.60672190490541e-06,
1688
+ "loss": 0.0142,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 4.68,
1693
+ "learning_rate": 5.5804645706261515e-06,
1694
+ "loss": 0.0175,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 4.7,
1699
+ "learning_rate": 5.5541909995050554e-06,
1700
+ "loss": 0.0092,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 4.72,
1705
+ "learning_rate": 5.527901926470386e-06,
1706
+ "loss": 0.0102,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 4.73,
1711
+ "learning_rate": 5.5015980868840254e-06,
1712
+ "loss": 0.0027,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 4.75,
1717
+ "learning_rate": 5.475280216520913e-06,
1718
+ "loss": 0.0214,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 4.77,
1723
+ "learning_rate": 5.448949051548459e-06,
1724
+ "loss": 0.0354,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 4.78,
1729
+ "learning_rate": 5.4226053285059466e-06,
1730
+ "loss": 0.0121,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 4.8,
1735
+ "learning_rate": 5.396249784283943e-06,
1736
+ "loss": 0.0403,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 4.82,
1741
+ "learning_rate": 5.369883156103672e-06,
1742
+ "loss": 0.0216,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 4.83,
1747
+ "learning_rate": 5.343506181496405e-06,
1748
+ "loss": 0.019,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 4.85,
1753
+ "learning_rate": 5.317119598282823e-06,
1754
+ "loss": 0.0176,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 4.87,
1759
+ "learning_rate": 5.290724144552379e-06,
1760
+ "loss": 0.0098,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 4.88,
1765
+ "learning_rate": 5.264320558642657e-06,
1766
+ "loss": 0.058,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 4.9,
1771
+ "learning_rate": 5.237909579118713e-06,
1772
+ "loss": 0.0116,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 4.92,
1777
+ "learning_rate": 5.2114919447524155e-06,
1778
+ "loss": 0.0131,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 4.93,
1783
+ "learning_rate": 5.185068394501791e-06,
1784
+ "loss": 0.0202,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 4.95,
1789
+ "learning_rate": 5.15863966749034e-06,
1790
+ "loss": 0.007,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 4.97,
1795
+ "learning_rate": 5.132206502986368e-06,
1796
+ "loss": 0.0135,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 4.98,
1801
+ "learning_rate": 5.105769640382309e-06,
1802
+ "loss": 0.0064,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 5.0,
1807
+ "learning_rate": 5.07932981917404e-06,
1808
+ "loss": 0.0091,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 5.02,
1813
+ "learning_rate": 5.052887778940199e-06,
1814
+ "loss": 0.0057,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 5.03,
1819
+ "learning_rate": 5.026444259321489e-06,
1820
+ "loss": 0.0136,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 5.05,
1825
+ "learning_rate": 5e-06,
1826
+ "loss": 0.003,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 5.07,
1831
+ "learning_rate": 4.973555740678512e-06,
1832
+ "loss": 0.0096,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 5.08,
1837
+ "learning_rate": 4.947112221059803e-06,
1838
+ "loss": 0.0278,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 5.1,
1843
+ "learning_rate": 4.9206701808259605e-06,
1844
+ "loss": 0.0257,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 5.12,
1849
+ "learning_rate": 4.894230359617693e-06,
1850
+ "loss": 0.0029,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 5.13,
1855
+ "learning_rate": 4.867793497013634e-06,
1856
+ "loss": 0.0127,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 5.15,
1861
+ "learning_rate": 4.841360332509663e-06,
1862
+ "loss": 0.0065,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 5.17,
1867
+ "learning_rate": 4.81493160549821e-06,
1868
+ "loss": 0.0159,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 5.18,
1873
+ "learning_rate": 4.788508055247585e-06,
1874
+ "loss": 0.0085,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 5.2,
1879
+ "learning_rate": 4.762090420881289e-06,
1880
+ "loss": 0.0065,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 5.22,
1885
+ "learning_rate": 4.735679441357343e-06,
1886
+ "loss": 0.0074,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 5.23,
1891
+ "learning_rate": 4.7092758554476215e-06,
1892
+ "loss": 0.016,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 5.25,
1897
+ "learning_rate": 4.682880401717178e-06,
1898
+ "loss": 0.0074,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 5.27,
1903
+ "learning_rate": 4.6564938185035954e-06,
1904
+ "loss": 0.005,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 5.28,
1909
+ "learning_rate": 4.630116843896329e-06,
1910
+ "loss": 0.0056,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 5.3,
1915
+ "learning_rate": 4.603750215716057e-06,
1916
+ "loss": 0.0043,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 5.32,
1921
+ "learning_rate": 4.577394671494054e-06,
1922
+ "loss": 0.0063,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 5.33,
1927
+ "learning_rate": 4.551050948451542e-06,
1928
+ "loss": 0.0039,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 5.35,
1933
+ "learning_rate": 4.524719783479088e-06,
1934
+ "loss": 0.004,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 5.37,
1939
+ "learning_rate": 4.498401913115975e-06,
1940
+ "loss": 0.0236,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 5.38,
1945
+ "learning_rate": 4.472098073529617e-06,
1946
+ "loss": 0.004,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 5.4,
1951
+ "learning_rate": 4.445809000494945e-06,
1952
+ "loss": 0.0222,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 5.42,
1957
+ "learning_rate": 4.4195354293738484e-06,
1958
+ "loss": 0.0112,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 5.43,
1963
+ "learning_rate": 4.393278095094591e-06,
1964
+ "loss": 0.0101,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 5.45,
1969
+ "learning_rate": 4.367037732131254e-06,
1970
+ "loss": 0.0115,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 5.47,
1975
+ "learning_rate": 4.340815074483199e-06,
1976
+ "loss": 0.0028,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 5.48,
1981
+ "learning_rate": 4.314610855654528e-06,
1982
+ "loss": 0.0088,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 5.5,
1987
+ "learning_rate": 4.2884258086335755e-06,
1988
+ "loss": 0.0025,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 5.52,
1993
+ "learning_rate": 4.26226066587239e-06,
1994
+ "loss": 0.0166,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 5.53,
1999
+ "learning_rate": 4.2361161592662655e-06,
2000
+ "loss": 0.0093,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 5.55,
2005
+ "learning_rate": 4.209993020133251e-06,
2006
+ "loss": 0.0092,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 5.57,
2011
+ "learning_rate": 4.183891979193703e-06,
2012
+ "loss": 0.0097,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 5.58,
2017
+ "learning_rate": 4.1578137665498485e-06,
2018
+ "loss": 0.0044,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 5.6,
2023
+ "learning_rate": 4.131759111665349e-06,
2024
+ "loss": 0.008,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 5.62,
2029
+ "learning_rate": 4.1057287433449145e-06,
2030
+ "loss": 0.0326,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 5.63,
2035
+ "learning_rate": 4.079723389713899e-06,
2036
+ "loss": 0.0037,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 5.65,
2041
+ "learning_rate": 4.053743778197951e-06,
2042
+ "loss": 0.0109,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 5.67,
2047
+ "learning_rate": 4.027790635502646e-06,
2048
+ "loss": 0.0015,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 5.68,
2053
+ "learning_rate": 4.00186468759318e-06,
2054
+ "loss": 0.006,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 5.7,
2059
+ "learning_rate": 3.975966659674048e-06,
2060
+ "loss": 0.0029,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 5.72,
2065
+ "learning_rate": 3.950097276168758e-06,
2066
+ "loss": 0.0036,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 5.73,
2071
+ "learning_rate": 3.924257260699583e-06,
2072
+ "loss": 0.0037,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 5.75,
2077
+ "learning_rate": 3.898447336067297e-06,
2078
+ "loss": 0.0146,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 5.77,
2083
+ "learning_rate": 3.872668224230979e-06,
2084
+ "loss": 0.0193,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 5.78,
2089
+ "learning_rate": 3.8469206462878e-06,
2090
+ "loss": 0.001,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 5.8,
2095
+ "learning_rate": 3.821205322452863e-06,
2096
+ "loss": 0.0143,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 5.82,
2101
+ "learning_rate": 3.7955229720390595e-06,
2102
+ "loss": 0.0022,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 5.83,
2107
+ "learning_rate": 3.769874313436933e-06,
2108
+ "loss": 0.0062,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 5.85,
2113
+ "learning_rate": 3.7442600640946045e-06,
2114
+ "loss": 0.0029,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 5.87,
2119
+ "learning_rate": 3.7186809404976877e-06,
2120
+ "loss": 0.0108,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 5.88,
2125
+ "learning_rate": 3.6931376581492564e-06,
2126
+ "loss": 0.0076,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 5.9,
2131
+ "learning_rate": 3.667630931549826e-06,
2132
+ "loss": 0.0025,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 5.92,
2137
+ "learning_rate": 3.6421614741773702e-06,
2138
+ "loss": 0.0051,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 5.93,
2143
+ "learning_rate": 3.6167299984673655e-06,
2144
+ "loss": 0.0073,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 5.95,
2149
+ "learning_rate": 3.5913372157928515e-06,
2150
+ "loss": 0.0081,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 5.97,
2155
+ "learning_rate": 3.5659838364445505e-06,
2156
+ "loss": 0.0129,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 5.98,
2161
+ "learning_rate": 3.5406705696109777e-06,
2162
+ "loss": 0.0028,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 6.0,
2167
+ "learning_rate": 3.5153981233586277e-06,
2168
+ "loss": 0.0128,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 6.02,
2173
+ "learning_rate": 3.4901672046121428e-06,
2174
+ "loss": 0.0101,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 6.03,
2179
+ "learning_rate": 3.4649785191345613e-06,
2180
+ "loss": 0.0034,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 6.05,
2185
+ "learning_rate": 3.439832771507565e-06,
2186
+ "loss": 0.0035,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 6.07,
2191
+ "learning_rate": 3.4147306651117663e-06,
2192
+ "loss": 0.0021,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 6.08,
2197
+ "learning_rate": 3.389672902107044e-06,
2198
+ "loss": 0.0031,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 6.1,
2203
+ "learning_rate": 3.3646601834128924e-06,
2204
+ "loss": 0.0047,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 6.12,
2209
+ "learning_rate": 3.3396932086888245e-06,
2210
+ "loss": 0.0213,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 6.13,
2215
+ "learning_rate": 3.3147726763147913e-06,
2216
+ "loss": 0.0136,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 6.15,
2221
+ "learning_rate": 3.289899283371657e-06,
2222
+ "loss": 0.0213,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 6.17,
2227
+ "learning_rate": 3.2650737256216885e-06,
2228
+ "loss": 0.0021,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 6.18,
2233
+ "learning_rate": 3.240296697489104e-06,
2234
+ "loss": 0.0023,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 6.2,
2239
+ "learning_rate": 3.2155688920406415e-06,
2240
+ "loss": 0.0028,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 6.22,
2245
+ "learning_rate": 3.190891000966176e-06,
2246
+ "loss": 0.0023,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 6.23,
2251
+ "learning_rate": 3.16626371455937e-06,
2252
+ "loss": 0.0015,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 6.25,
2257
+ "learning_rate": 3.141687721698363e-06,
2258
+ "loss": 0.0018,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 6.27,
2263
+ "learning_rate": 3.1171637098265063e-06,
2264
+ "loss": 0.0049,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 6.28,
2269
+ "learning_rate": 3.092692364933132e-06,
2270
+ "loss": 0.0054,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 6.3,
2275
+ "learning_rate": 3.0682743715343565e-06,
2276
+ "loss": 0.0018,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 6.32,
2281
+ "learning_rate": 3.043910412653952e-06,
2282
+ "loss": 0.0053,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 6.33,
2287
+ "learning_rate": 3.019601169804216e-06,
2288
+ "loss": 0.0034,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 6.35,
2293
+ "learning_rate": 2.995347322966933e-06,
2294
+ "loss": 0.0076,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 6.37,
2299
+ "learning_rate": 2.9711495505743317e-06,
2300
+ "loss": 0.0068,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 6.38,
2305
+ "learning_rate": 2.9470085294901244e-06,
2306
+ "loss": 0.0035,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 6.4,
2311
+ "learning_rate": 2.9229249349905686e-06,
2312
+ "loss": 0.0029,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 6.42,
2317
+ "learning_rate": 2.898899440745569e-06,
2318
+ "loss": 0.0047,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 6.43,
2323
+ "learning_rate": 2.8749327187998516e-06,
2324
+ "loss": 0.0043,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 6.45,
2329
+ "learning_rate": 2.851025439554142e-06,
2330
+ "loss": 0.0026,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 6.47,
2335
+ "learning_rate": 2.8271782717464413e-06,
2336
+ "loss": 0.0075,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 6.48,
2341
+ "learning_rate": 2.803391882433288e-06,
2342
+ "loss": 0.0027,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 6.5,
2347
+ "learning_rate": 2.7796669369711294e-06,
2348
+ "loss": 0.0063,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 6.52,
2353
+ "learning_rate": 2.7560040989976894e-06,
2354
+ "loss": 0.0051,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 6.53,
2359
+ "learning_rate": 2.7324040304134125e-06,
2360
+ "loss": 0.0076,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 6.55,
2365
+ "learning_rate": 2.708867391362948e-06,
2366
+ "loss": 0.0022,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 6.57,
2371
+ "learning_rate": 2.685394840216688e-06,
2372
+ "loss": 0.004,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 6.58,
2377
+ "learning_rate": 2.6619870335523434e-06,
2378
+ "loss": 0.0023,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 6.6,
2383
+ "learning_rate": 2.6386446261365874e-06,
2384
+ "loss": 0.009,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 6.62,
2389
+ "learning_rate": 2.6153682709067317e-06,
2390
+ "loss": 0.0013,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 6.63,
2395
+ "learning_rate": 2.5921586189524694e-06,
2396
+ "loss": 0.0029,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 6.65,
2401
+ "learning_rate": 2.5690163194976576e-06,
2402
+ "loss": 0.0052,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 6.67,
2407
+ "learning_rate": 2.5459420198821604e-06,
2408
+ "loss": 0.0039,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 6.68,
2413
+ "learning_rate": 2.5229363655437394e-06,
2414
+ "loss": 0.0087,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 6.7,
2419
+ "learning_rate": 2.5000000000000015e-06,
2420
+ "loss": 0.0046,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 6.72,
2425
+ "learning_rate": 2.4771335648303944e-06,
2426
+ "loss": 0.0009,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 6.73,
2431
+ "learning_rate": 2.454337699658267e-06,
2432
+ "loss": 0.0011,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 6.75,
2437
+ "learning_rate": 2.4316130421329696e-06,
2438
+ "loss": 0.0026,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 6.77,
2443
+ "learning_rate": 2.4089602279120224e-06,
2444
+ "loss": 0.003,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 6.78,
2449
+ "learning_rate": 2.3863798906433396e-06,
2450
+ "loss": 0.0022,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 6.8,
2455
+ "learning_rate": 2.363872661947488e-06,
2456
+ "loss": 0.0026,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 6.82,
2461
+ "learning_rate": 2.3414391714000435e-06,
2462
+ "loss": 0.0019,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 6.83,
2467
+ "learning_rate": 2.319080046513954e-06,
2468
+ "loss": 0.0019,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 6.85,
2473
+ "learning_rate": 2.296795912722014e-06,
2474
+ "loss": 0.014,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 6.87,
2479
+ "learning_rate": 2.274587393359342e-06,
2480
+ "loss": 0.0018,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 6.88,
2485
+ "learning_rate": 2.2524551096459703e-06,
2486
+ "loss": 0.0011,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 6.9,
2491
+ "learning_rate": 2.230399680669449e-06,
2492
+ "loss": 0.0029,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 6.92,
2497
+ "learning_rate": 2.2084217233675386e-06,
2498
+ "loss": 0.0032,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 6.93,
2503
+ "learning_rate": 2.1865218525109496e-06,
2504
+ "loss": 0.0023,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 6.95,
2509
+ "learning_rate": 2.1647006806861472e-06,
2510
+ "loss": 0.0046,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 6.97,
2515
+ "learning_rate": 2.1429588182782147e-06,
2516
+ "loss": 0.0014,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 6.98,
2521
+ "learning_rate": 2.1212968734537813e-06,
2522
+ "loss": 0.0042,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 7.0,
2527
+ "learning_rate": 2.09971545214401e-06,
2528
+ "loss": 0.0056,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 7.02,
2533
+ "learning_rate": 2.0782151580276467e-06,
2534
+ "loss": 0.0116,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 7.03,
2539
+ "learning_rate": 2.0567965925141366e-06,
2540
+ "loss": 0.0018,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 7.05,
2545
+ "learning_rate": 2.0354603547267985e-06,
2546
+ "loss": 0.0055,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 7.07,
2551
+ "learning_rate": 2.0142070414860704e-06,
2552
+ "loss": 0.0021,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 7.08,
2557
+ "learning_rate": 1.9930372472928095e-06,
2558
+ "loss": 0.0012,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 7.1,
2563
+ "learning_rate": 1.971951564311668e-06,
2564
+ "loss": 0.0031,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 7.12,
2569
+ "learning_rate": 1.9509505823545232e-06,
2570
+ "loss": 0.0063,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 7.13,
2575
+ "learning_rate": 1.9300348888639915e-06,
2576
+ "loss": 0.0022,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 7.15,
2581
+ "learning_rate": 1.9092050688969736e-06,
2582
+ "loss": 0.0017,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 7.17,
2587
+ "learning_rate": 1.8884617051083183e-06,
2588
+ "loss": 0.0007,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 7.18,
2593
+ "learning_rate": 1.867805377734494e-06,
2594
+ "loss": 0.0084,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 7.2,
2599
+ "learning_rate": 1.8472366645773892e-06,
2600
+ "loss": 0.0025,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 7.22,
2605
+ "learning_rate": 1.826756140988119e-06,
2606
+ "loss": 0.0062,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 7.23,
2611
+ "learning_rate": 1.8063643798509594e-06,
2612
+ "loss": 0.0026,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 7.25,
2617
+ "learning_rate": 1.7860619515673034e-06,
2618
+ "loss": 0.0016,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 7.27,
2623
+ "learning_rate": 1.7658494240397127e-06,
2624
+ "loss": 0.0135,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 7.28,
2629
+ "learning_rate": 1.7457273626560328e-06,
2630
+ "loss": 0.0012,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 7.3,
2635
+ "learning_rate": 1.7256963302735752e-06,
2636
+ "loss": 0.0031,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 7.32,
2641
+ "learning_rate": 1.7057568872033758e-06,
2642
+ "loss": 0.0018,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 7.33,
2647
+ "learning_rate": 1.68590959119452e-06,
2648
+ "loss": 0.0012,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 7.35,
2653
+ "learning_rate": 1.6661549974185426e-06,
2654
+ "loss": 0.0042,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 7.37,
2659
+ "learning_rate": 1.646493658453896e-06,
2660
+ "loss": 0.0011,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 7.38,
2665
+ "learning_rate": 1.626926124270497e-06,
2666
+ "loss": 0.0023,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 7.4,
2671
+ "learning_rate": 1.6074529422143398e-06,
2672
+ "loss": 0.002,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 7.42,
2677
+ "learning_rate": 1.5880746569921867e-06,
2678
+ "loss": 0.0015,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 7.43,
2683
+ "learning_rate": 1.5687918106563326e-06,
2684
+ "loss": 0.0009,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 7.45,
2689
+ "learning_rate": 1.549604942589441e-06,
2690
+ "loss": 0.0013,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 7.47,
2695
+ "learning_rate": 1.5305145894894547e-06,
2696
+ "loss": 0.0026,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 7.48,
2701
+ "learning_rate": 1.5115212853545924e-06,
2702
+ "loss": 0.0016,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 7.5,
2707
+ "learning_rate": 1.4926255614683931e-06,
2708
+ "loss": 0.0027,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 7.52,
2713
+ "learning_rate": 1.4738279463848803e-06,
2714
+ "loss": 0.0023,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 7.53,
2719
+ "learning_rate": 1.4551289659137497e-06,
2720
+ "loss": 0.0018,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 7.55,
2725
+ "learning_rate": 1.4365291431056871e-06,
2726
+ "loss": 0.0018,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 7.57,
2731
+ "learning_rate": 1.4180289982377138e-06,
2732
+ "loss": 0.0175,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 7.58,
2737
+ "learning_rate": 1.3996290487986568e-06,
2738
+ "loss": 0.0112,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 7.6,
2743
+ "learning_rate": 1.3813298094746491e-06,
2744
+ "loss": 0.0031,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 7.62,
2749
+ "learning_rate": 1.3631317921347564e-06,
2750
+ "loss": 0.0051,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 7.63,
2755
+ "learning_rate": 1.345035505816642e-06,
2756
+ "loss": 0.0023,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 7.65,
2761
+ "learning_rate": 1.3270414567123342e-06,
2762
+ "loss": 0.008,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 7.67,
2767
+ "learning_rate": 1.3091501481540676e-06,
2768
+ "loss": 0.0047,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 7.68,
2773
+ "learning_rate": 1.2913620806002026e-06,
2774
+ "loss": 0.0023,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 7.7,
2779
+ "learning_rate": 1.2736777516212267e-06,
2780
+ "loss": 0.0035,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 7.72,
2785
+ "learning_rate": 1.2560976558858372e-06,
2786
+ "loss": 0.0031,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 7.73,
2791
+ "learning_rate": 1.238622285147103e-06,
2792
+ "loss": 0.0022,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 7.75,
2797
+ "learning_rate": 1.2212521282287093e-06,
2798
+ "loss": 0.0028,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 7.77,
2803
+ "learning_rate": 1.2039876710112847e-06,
2804
+ "loss": 0.0034,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 7.78,
2809
+ "learning_rate": 1.1868293964188099e-06,
2810
+ "loss": 0.002,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 7.8,
2815
+ "learning_rate": 1.1697777844051105e-06,
2816
+ "loss": 0.0039,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 7.82,
2821
+ "learning_rate": 1.152833311940429e-06,
2822
+ "loss": 0.0078,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 7.83,
2827
+ "learning_rate": 1.135996452998085e-06,
2828
+ "loss": 0.0021,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 7.85,
2833
+ "learning_rate": 1.1192676785412154e-06,
2834
+ "loss": 0.0038,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 7.87,
2839
+ "learning_rate": 1.1026474565096068e-06,
2840
+ "loss": 0.003,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 7.88,
2845
+ "learning_rate": 1.0861362518065915e-06,
2846
+ "loss": 0.0021,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 7.9,
2851
+ "learning_rate": 1.0697345262860638e-06,
2852
+ "loss": 0.0012,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 7.92,
2857
+ "learning_rate": 1.0534427387395391e-06,
2858
+ "loss": 0.0024,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 7.93,
2863
+ "learning_rate": 1.0372613448833429e-06,
2864
+ "loss": 0.0033,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 7.95,
2869
+ "learning_rate": 1.0211907973458391e-06,
2870
+ "loss": 0.0013,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 7.97,
2875
+ "learning_rate": 1.0052315456547934e-06,
2876
+ "loss": 0.0025,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 7.98,
2881
+ "learning_rate": 9.893840362247809e-07,
2882
+ "loss": 0.0033,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 8.0,
2887
+ "learning_rate": 9.73648712344707e-07,
2888
+ "loss": 0.0018,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 8.02,
2893
+ "learning_rate": 9.580260141654057e-07,
2894
+ "loss": 0.0072,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 8.03,
2899
+ "learning_rate": 9.425163786873292e-07,
2900
+ "loss": 0.0014,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 8.05,
2905
+ "learning_rate": 9.271202397483214e-07,
2906
+ "loss": 0.0019,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 8.07,
2911
+ "learning_rate": 9.118380280114858e-07,
2912
+ "loss": 0.0021,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 8.08,
2917
+ "learning_rate": 8.966701709531344e-07,
2918
+ "loss": 0.0031,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 8.1,
2923
+ "learning_rate": 8.816170928508367e-07,
2924
+ "loss": 0.0041,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 8.12,
2929
+ "learning_rate": 8.666792147715447e-07,
2930
+ "loss": 0.0013,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 8.13,
2935
+ "learning_rate": 8.518569545598198e-07,
2936
+ "loss": 0.002,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 8.15,
2941
+ "learning_rate": 8.371507268261436e-07,
2942
+ "loss": 0.004,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 8.17,
2947
+ "learning_rate": 8.225609429353187e-07,
2948
+ "loss": 0.0023,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 8.18,
2953
+ "learning_rate": 8.08088010994963e-07,
2954
+ "loss": 0.001,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 8.2,
2959
+ "learning_rate": 7.937323358440935e-07,
2960
+ "loss": 0.0025,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 8.22,
2965
+ "learning_rate": 7.79494319041808e-07,
2966
+ "loss": 0.0025,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 8.23,
2971
+ "learning_rate": 7.653743588560387e-07,
2972
+ "loss": 0.0041,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 8.25,
2977
+ "learning_rate": 7.513728502524286e-07,
2978
+ "loss": 0.0055,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 8.27,
2983
+ "learning_rate": 7.374901848832683e-07,
2984
+ "loss": 0.0079,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 8.28,
2989
+ "learning_rate": 7.237267510765549e-07,
2990
+ "loss": 0.0023,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 8.3,
2995
+ "learning_rate": 7.100829338251147e-07,
2996
+ "loss": 0.0064,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 8.32,
3001
+ "learning_rate": 6.965591147758482e-07,
3002
+ "loss": 0.0025,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 8.33,
3007
+ "learning_rate": 6.831556722190453e-07,
3008
+ "loss": 0.0017,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 8.35,
3013
+ "learning_rate": 6.698729810778065e-07,
3014
+ "loss": 0.0019,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 8.37,
3019
+ "learning_rate": 6.567114128975571e-07,
3020
+ "loss": 0.0015,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 8.38,
3025
+ "learning_rate": 6.436713358356506e-07,
3026
+ "loss": 0.0029,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 8.4,
3031
+ "learning_rate": 6.307531146510754e-07,
3032
+ "loss": 0.0025,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 8.42,
3037
+ "learning_rate": 6.179571106942466e-07,
3038
+ "loss": 0.0141,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 8.43,
3043
+ "learning_rate": 6.052836818969027e-07,
3044
+ "loss": 0.0025,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 8.45,
3049
+ "learning_rate": 5.927331827620902e-07,
3050
+ "loss": 0.0033,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 8.47,
3055
+ "learning_rate": 5.803059643542491e-07,
3056
+ "loss": 0.0034,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 8.48,
3061
+ "learning_rate": 5.680023742893926e-07,
3062
+ "loss": 0.0023,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 8.5,
3067
+ "learning_rate": 5.558227567253832e-07,
3068
+ "loss": 0.0009,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 8.52,
3073
+ "learning_rate": 5.437674523523056e-07,
3074
+ "loss": 0.0025,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 8.53,
3079
+ "learning_rate": 5.318367983829393e-07,
3080
+ "loss": 0.0021,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 8.55,
3085
+ "learning_rate": 5.200311285433213e-07,
3086
+ "loss": 0.0028,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 8.57,
3091
+ "learning_rate": 5.083507730634152e-07,
3092
+ "loss": 0.0025,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 8.58,
3097
+ "learning_rate": 4.967960586678722e-07,
3098
+ "loss": 0.0024,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 8.6,
3103
+ "learning_rate": 4.853673085668947e-07,
3104
+ "loss": 0.0022,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 8.62,
3109
+ "learning_rate": 4.740648424471872e-07,
3110
+ "loss": 0.0024,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 8.63,
3115
+ "learning_rate": 4.628889764630279e-07,
3116
+ "loss": 0.0021,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 8.65,
3121
+ "learning_rate": 4.5184002322740784e-07,
3122
+ "loss": 0.0037,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 8.67,
3127
+ "learning_rate": 4.4091829180330503e-07,
3128
+ "loss": 0.0019,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 8.68,
3133
+ "learning_rate": 4.3012408769502134e-07,
3134
+ "loss": 0.0109,
3135
+ "step": 521
3136
+ },
3137
+ {
3138
+ "epoch": 8.7,
3139
+ "learning_rate": 4.194577128396521e-07,
3140
+ "loss": 0.0014,
3141
+ "step": 522
3142
+ },
3143
+ {
3144
+ "epoch": 8.72,
3145
+ "learning_rate": 4.089194655986306e-07,
3146
+ "loss": 0.0013,
3147
+ "step": 523
3148
+ },
3149
+ {
3150
+ "epoch": 8.73,
3151
+ "learning_rate": 3.985096407493838e-07,
3152
+ "loss": 0.0041,
3153
+ "step": 524
3154
+ },
3155
+ {
3156
+ "epoch": 8.75,
3157
+ "learning_rate": 3.882285294770938e-07,
3158
+ "loss": 0.0097,
3159
+ "step": 525
3160
+ },
3161
+ {
3162
+ "epoch": 8.77,
3163
+ "learning_rate": 3.7807641936653984e-07,
3164
+ "loss": 0.0021,
3165
+ "step": 526
3166
+ },
3167
+ {
3168
+ "epoch": 8.78,
3169
+ "learning_rate": 3.680535943940688e-07,
3170
+ "loss": 0.0036,
3171
+ "step": 527
3172
+ },
3173
+ {
3174
+ "epoch": 8.8,
3175
+ "learning_rate": 3.581603349196372e-07,
3176
+ "loss": 0.0017,
3177
+ "step": 528
3178
+ },
3179
+ {
3180
+ "epoch": 8.82,
3181
+ "learning_rate": 3.48396917678982e-07,
3182
+ "loss": 0.0015,
3183
+ "step": 529
3184
+ },
3185
+ {
3186
+ "epoch": 8.83,
3187
+ "learning_rate": 3.3876361577587115e-07,
3188
+ "loss": 0.0033,
3189
+ "step": 530
3190
+ },
3191
+ {
3192
+ "epoch": 8.85,
3193
+ "learning_rate": 3.2926069867446673e-07,
3194
+ "loss": 0.0055,
3195
+ "step": 531
3196
+ },
3197
+ {
3198
+ "epoch": 8.87,
3199
+ "learning_rate": 3.1988843219178776e-07,
3200
+ "loss": 0.0011,
3201
+ "step": 532
3202
+ },
3203
+ {
3204
+ "epoch": 8.88,
3205
+ "learning_rate": 3.106470784902754e-07,
3206
+ "loss": 0.0036,
3207
+ "step": 533
3208
+ },
3209
+ {
3210
+ "epoch": 8.9,
3211
+ "learning_rate": 3.015368960704584e-07,
3212
+ "loss": 0.0015,
3213
+ "step": 534
3214
+ },
3215
+ {
3216
+ "epoch": 8.92,
3217
+ "learning_rate": 2.9255813976372227e-07,
3218
+ "loss": 0.0007,
3219
+ "step": 535
3220
+ },
3221
+ {
3222
+ "epoch": 8.93,
3223
+ "learning_rate": 2.8371106072518194e-07,
3224
+ "loss": 0.0014,
3225
+ "step": 536
3226
+ },
3227
+ {
3228
+ "epoch": 8.95,
3229
+ "learning_rate": 2.7499590642665773e-07,
3230
+ "loss": 0.0025,
3231
+ "step": 537
3232
+ },
3233
+ {
3234
+ "epoch": 8.97,
3235
+ "learning_rate": 2.664129206497479e-07,
3236
+ "loss": 0.0042,
3237
+ "step": 538
3238
+ },
3239
+ {
3240
+ "epoch": 8.98,
3241
+ "learning_rate": 2.579623434790174e-07,
3242
+ "loss": 0.0012,
3243
+ "step": 539
3244
+ },
3245
+ {
3246
+ "epoch": 9.0,
3247
+ "learning_rate": 2.4964441129527337e-07,
3248
+ "loss": 0.0014,
3249
+ "step": 540
3250
+ },
3251
+ {
3252
+ "epoch": 9.02,
3253
+ "learning_rate": 2.4145935676896106e-07,
3254
+ "loss": 0.0021,
3255
+ "step": 541
3256
+ },
3257
+ {
3258
+ "epoch": 9.03,
3259
+ "learning_rate": 2.3340740885364922e-07,
3260
+ "loss": 0.0039,
3261
+ "step": 542
3262
+ },
3263
+ {
3264
+ "epoch": 9.05,
3265
+ "learning_rate": 2.2548879277963065e-07,
3266
+ "loss": 0.0018,
3267
+ "step": 543
3268
+ },
3269
+ {
3270
+ "epoch": 9.07,
3271
+ "learning_rate": 2.1770373004762035e-07,
3272
+ "loss": 0.0026,
3273
+ "step": 544
3274
+ },
3275
+ {
3276
+ "epoch": 9.08,
3277
+ "learning_rate": 2.1005243842255552e-07,
3278
+ "loss": 0.001,
3279
+ "step": 545
3280
+ },
3281
+ {
3282
+ "epoch": 9.1,
3283
+ "learning_rate": 2.0253513192751374e-07,
3284
+ "loss": 0.0052,
3285
+ "step": 546
3286
+ },
3287
+ {
3288
+ "epoch": 9.12,
3289
+ "learning_rate": 1.9515202083771388e-07,
3290
+ "loss": 0.0019,
3291
+ "step": 547
3292
+ },
3293
+ {
3294
+ "epoch": 9.13,
3295
+ "learning_rate": 1.8790331167464758e-07,
3296
+ "loss": 0.0067,
3297
+ "step": 548
3298
+ },
3299
+ {
3300
+ "epoch": 9.15,
3301
+ "learning_rate": 1.807892072002898e-07,
3302
+ "loss": 0.0031,
3303
+ "step": 549
3304
+ },
3305
+ {
3306
+ "epoch": 9.17,
3307
+ "learning_rate": 1.738099064114368e-07,
3308
+ "loss": 0.0025,
3309
+ "step": 550
3310
+ },
3311
+ {
3312
+ "epoch": 9.18,
3313
+ "learning_rate": 1.6696560453413446e-07,
3314
+ "loss": 0.0015,
3315
+ "step": 551
3316
+ },
3317
+ {
3318
+ "epoch": 9.2,
3319
+ "learning_rate": 1.6025649301821877e-07,
3320
+ "loss": 0.0021,
3321
+ "step": 552
3322
+ },
3323
+ {
3324
+ "epoch": 9.22,
3325
+ "learning_rate": 1.5368275953196177e-07,
3326
+ "loss": 0.0019,
3327
+ "step": 553
3328
+ },
3329
+ {
3330
+ "epoch": 9.23,
3331
+ "learning_rate": 1.4724458795681962e-07,
3332
+ "loss": 0.0007,
3333
+ "step": 554
3334
+ },
3335
+ {
3336
+ "epoch": 9.25,
3337
+ "learning_rate": 1.4094215838229176e-07,
3338
+ "loss": 0.0033,
3339
+ "step": 555
3340
+ },
3341
+ {
3342
+ "epoch": 9.27,
3343
+ "learning_rate": 1.3477564710088097e-07,
3344
+ "loss": 0.0027,
3345
+ "step": 556
3346
+ },
3347
+ {
3348
+ "epoch": 9.28,
3349
+ "learning_rate": 1.2874522660316412e-07,
3350
+ "loss": 0.0018,
3351
+ "step": 557
3352
+ },
3353
+ {
3354
+ "epoch": 9.3,
3355
+ "learning_rate": 1.2285106557296479e-07,
3356
+ "loss": 0.0016,
3357
+ "step": 558
3358
+ },
3359
+ {
3360
+ "epoch": 9.32,
3361
+ "learning_rate": 1.1709332888263869e-07,
3362
+ "loss": 0.0033,
3363
+ "step": 559
3364
+ },
3365
+ {
3366
+ "epoch": 9.33,
3367
+ "learning_rate": 1.1147217758845752e-07,
3368
+ "loss": 0.0014,
3369
+ "step": 560
3370
+ },
3371
+ {
3372
+ "epoch": 9.35,
3373
+ "learning_rate": 1.0598776892610685e-07,
3374
+ "loss": 0.0022,
3375
+ "step": 561
3376
+ },
3377
+ {
3378
+ "epoch": 9.37,
3379
+ "learning_rate": 1.0064025630628583e-07,
3380
+ "loss": 0.0026,
3381
+ "step": 562
3382
+ },
3383
+ {
3384
+ "epoch": 9.38,
3385
+ "learning_rate": 9.542978931041835e-08,
3386
+ "loss": 0.0022,
3387
+ "step": 563
3388
+ },
3389
+ {
3390
+ "epoch": 9.4,
3391
+ "learning_rate": 9.035651368646647e-08,
3392
+ "loss": 0.0014,
3393
+ "step": 564
3394
+ },
3395
+ {
3396
+ "epoch": 9.42,
3397
+ "learning_rate": 8.542057134485638e-08,
3398
+ "loss": 0.0006,
3399
+ "step": 565
3400
+ },
3401
+ {
3402
+ "epoch": 9.43,
3403
+ "learning_rate": 8.06221003545038e-08,
3404
+ "loss": 0.0028,
3405
+ "step": 566
3406
+ },
3407
+ {
3408
+ "epoch": 9.45,
3409
+ "learning_rate": 7.59612349389599e-08,
3410
+ "loss": 0.0019,
3411
+ "step": 567
3412
+ },
3413
+ {
3414
+ "epoch": 9.47,
3415
+ "learning_rate": 7.143810547264762e-08,
3416
+ "loss": 0.0008,
3417
+ "step": 568
3418
+ },
3419
+ {
3420
+ "epoch": 9.48,
3421
+ "learning_rate": 6.705283847722288e-08,
3422
+ "loss": 0.0031,
3423
+ "step": 569
3424
+ },
3425
+ {
3426
+ "epoch": 9.5,
3427
+ "learning_rate": 6.280555661802857e-08,
3428
+ "loss": 0.0052,
3429
+ "step": 570
3430
+ },
3431
+ {
3432
+ "epoch": 9.52,
3433
+ "learning_rate": 5.869637870067002e-08,
3434
+ "loss": 0.0024,
3435
+ "step": 571
3436
+ },
3437
+ {
3438
+ "epoch": 9.53,
3439
+ "learning_rate": 5.472541966768552e-08,
3440
+ "loss": 0.0023,
3441
+ "step": 572
3442
+ },
3443
+ {
3444
+ "epoch": 9.55,
3445
+ "learning_rate": 5.089279059533658e-08,
3446
+ "loss": 0.0031,
3447
+ "step": 573
3448
+ },
3449
+ {
3450
+ "epoch": 9.57,
3451
+ "learning_rate": 4.719859869049659e-08,
3452
+ "loss": 0.0046,
3453
+ "step": 574
3454
+ },
3455
+ {
3456
+ "epoch": 9.58,
3457
+ "learning_rate": 4.3642947287654284e-08,
3458
+ "loss": 0.0019,
3459
+ "step": 575
3460
+ },
3461
+ {
3462
+ "epoch": 9.6,
3463
+ "learning_rate": 4.02259358460233e-08,
3464
+ "loss": 0.001,
3465
+ "step": 576
3466
+ },
3467
+ {
3468
+ "epoch": 9.62,
3469
+ "learning_rate": 3.694765994675886e-08,
3470
+ "loss": 0.0022,
3471
+ "step": 577
3472
+ },
3473
+ {
3474
+ "epoch": 9.63,
3475
+ "learning_rate": 3.3808211290284886e-08,
3476
+ "loss": 0.0043,
3477
+ "step": 578
3478
+ },
3479
+ {
3480
+ "epoch": 9.65,
3481
+ "learning_rate": 3.080767769372939e-08,
3482
+ "loss": 0.0023,
3483
+ "step": 579
3484
+ },
3485
+ {
3486
+ "epoch": 9.67,
3487
+ "learning_rate": 2.7946143088466437e-08,
3488
+ "loss": 0.0062,
3489
+ "step": 580
3490
+ },
3491
+ {
3492
+ "epoch": 9.68,
3493
+ "learning_rate": 2.5223687517770823e-08,
3494
+ "loss": 0.0013,
3495
+ "step": 581
3496
+ },
3497
+ {
3498
+ "epoch": 9.7,
3499
+ "learning_rate": 2.264038713457706e-08,
3500
+ "loss": 0.0124,
3501
+ "step": 582
3502
+ },
3503
+ {
3504
+ "epoch": 9.72,
3505
+ "learning_rate": 2.0196314199349977e-08,
3506
+ "loss": 0.0076,
3507
+ "step": 583
3508
+ },
3509
+ {
3510
+ "epoch": 9.73,
3511
+ "learning_rate": 1.789153707806357e-08,
3512
+ "loss": 0.0029,
3513
+ "step": 584
3514
+ },
3515
+ {
3516
+ "epoch": 9.75,
3517
+ "learning_rate": 1.5726120240288632e-08,
3518
+ "loss": 0.0023,
3519
+ "step": 585
3520
+ },
3521
+ {
3522
+ "epoch": 9.77,
3523
+ "learning_rate": 1.3700124257388092e-08,
3524
+ "loss": 0.0011,
3525
+ "step": 586
3526
+ },
3527
+ {
3528
+ "epoch": 9.78,
3529
+ "learning_rate": 1.1813605800825578e-08,
3530
+ "loss": 0.003,
3531
+ "step": 587
3532
+ },
3533
+ {
3534
+ "epoch": 9.8,
3535
+ "learning_rate": 1.006661764057837e-08,
3536
+ "loss": 0.0048,
3537
+ "step": 588
3538
+ },
3539
+ {
3540
+ "epoch": 9.82,
3541
+ "learning_rate": 8.459208643659122e-09,
3542
+ "loss": 0.0019,
3543
+ "step": 589
3544
+ },
3545
+ {
3546
+ "epoch": 9.83,
3547
+ "learning_rate": 6.991423772753636e-09,
3548
+ "loss": 0.0013,
3549
+ "step": 590
3550
+ },
3551
+ {
3552
+ "epoch": 9.85,
3553
+ "learning_rate": 5.6633040849601865e-09,
3554
+ "loss": 0.002,
3555
+ "step": 591
3556
+ },
3557
+ {
3558
+ "epoch": 9.87,
3559
+ "learning_rate": 4.474886730641004e-09,
3560
+ "loss": 0.0048,
3561
+ "step": 592
3562
+ },
3563
+ {
3564
+ "epoch": 9.88,
3565
+ "learning_rate": 3.4262049523847707e-09,
3566
+ "loss": 0.0015,
3567
+ "step": 593
3568
+ },
3569
+ {
3570
+ "epoch": 9.9,
3571
+ "learning_rate": 2.5172880840745873e-09,
3572
+ "loss": 0.014,
3573
+ "step": 594
3574
+ },
3575
+ {
3576
+ "epoch": 9.92,
3577
+ "learning_rate": 1.7481615500691829e-09,
3578
+ "loss": 0.0058,
3579
+ "step": 595
3580
+ },
3581
+ {
3582
+ "epoch": 9.93,
3583
+ "learning_rate": 1.118846864490708e-09,
3584
+ "loss": 0.0012,
3585
+ "step": 596
3586
+ },
3587
+ {
3588
+ "epoch": 9.95,
3589
+ "learning_rate": 6.293616306246586e-10,
3590
+ "loss": 0.0031,
3591
+ "step": 597
3592
+ },
3593
+ {
3594
+ "epoch": 9.97,
3595
+ "learning_rate": 2.797195404247166e-10,
3596
+ "loss": 0.0031,
3597
+ "step": 598
3598
+ },
3599
+ {
3600
+ "epoch": 9.98,
3601
+ "learning_rate": 6.993037413194348e-11,
3602
+ "loss": 0.0009,
3603
+ "step": 599
3604
+ },
3605
+ {
3606
+ "epoch": 10.0,
3607
+ "learning_rate": 0.0,
3608
+ "loss": 0.0016,
3609
+ "step": 600
3610
+ },
3611
+ {
3612
+ "epoch": 10.0,
3613
+ "step": 600,
3614
+ "total_flos": 3.37187743727616e+16,
3615
+ "train_loss": 0.051574386974486214,
3616
+ "train_runtime": 1007.7691,
3617
+ "train_samples_per_second": 1.191,
3618
+ "train_steps_per_second": 0.595
3619
+ }
3620
+ ],
3621
+ "logging_steps": 1.0,
3622
+ "max_steps": 600,
3623
+ "num_input_tokens_seen": 0,
3624
+ "num_train_epochs": 10,
3625
+ "save_steps": 1000,
3626
+ "total_flos": 3.37187743727616e+16,
3627
+ "train_batch_size": 1,
3628
+ "trial_name": null,
3629
+ "trial_params": null
3630
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e732eb00beed04591f31644de882a12cc289c18475cc0879a46b18e03481ff36
3
+ size 4728