andersjiang
commited on
Commit
·
1621ab5
1
Parent(s):
8559b27
commit from
Browse files- README.md +202 -0
- adapter_config.json +30 -0
- adapter_model.safetensors +3 -0
- qwen.tiktoken +0 -0
- special_tokens_map.json +3 -0
- tokenization_qwen.py +598 -0
- tokenizer_config.json +14 -0
- trainer_state.json +3630 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: /home/wentao/models--Qwen--Qwen-VL-Chat/snapshots/f57cfbd358cb56b710d963669ad1bcfb44cdcdd8
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
adapter_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "F:/kelperliu/docker_data/models--Qwen--Qwen-VL-Chat/snapshots/f57cfbd358cb56b710d963669ad1bcfb44cdcdd8",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layer_replication": null,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 64,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"w1",
|
23 |
+
"c_attn",
|
24 |
+
"attn.c_proj",
|
25 |
+
"w2"
|
26 |
+
],
|
27 |
+
"task_type": "CAUSAL_LM",
|
28 |
+
"use_dora": false,
|
29 |
+
"use_rslora": false
|
30 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6639723fd37096e64df5cb6528157004ccad0b3704e5573bf74e4d9528d459bc
|
3 |
+
size 224428728
|
qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<|endoftext|>"
|
3 |
+
}
|
tokenization_qwen.py
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import requests
|
12 |
+
import unicodedata
|
13 |
+
from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional
|
14 |
+
|
15 |
+
import tiktoken
|
16 |
+
import numpy as np
|
17 |
+
from PIL import Image
|
18 |
+
from PIL import ImageFont
|
19 |
+
from PIL import ImageDraw
|
20 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
21 |
+
from transformers.utils import try_to_load_from_cache
|
22 |
+
|
23 |
+
import matplotlib.colors as mcolors
|
24 |
+
from matplotlib.font_manager import FontProperties
|
25 |
+
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
|
30 |
+
FONT_PATH = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf")
|
31 |
+
if FONT_PATH is None:
|
32 |
+
if not os.path.exists("SimSun.ttf"):
|
33 |
+
ttf = requests.get("https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun.ttf")
|
34 |
+
open("SimSun.ttf", "wb").write(ttf.content)
|
35 |
+
FONT_PATH = "SimSun.ttf"
|
36 |
+
|
37 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
38 |
+
ENDOFTEXT = "<|endoftext|>"
|
39 |
+
IMSTART = "<|im_start|>"
|
40 |
+
IMEND = "<|im_end|>"
|
41 |
+
# as the default behavior is changed to allow special tokens in
|
42 |
+
# regular texts, the surface forms of special tokens need to be
|
43 |
+
# as different as possible to minimize the impact
|
44 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
45 |
+
SPECIAL_TOKENS = (
|
46 |
+
ENDOFTEXT,
|
47 |
+
IMSTART,
|
48 |
+
IMEND,
|
49 |
+
) + EXTRAS
|
50 |
+
IMG_TOKEN_SPAN = 256
|
51 |
+
|
52 |
+
|
53 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
54 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
55 |
+
contents = f.read()
|
56 |
+
return {
|
57 |
+
base64.b64decode(token): int(rank)
|
58 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
59 |
+
}
|
60 |
+
|
61 |
+
def _list_find(
|
62 |
+
input_list: List[Any],
|
63 |
+
candidates: Tuple[Any],
|
64 |
+
start: int = 0,
|
65 |
+
):
|
66 |
+
for i in range(start, len(input_list)):
|
67 |
+
if input_list[i] in candidates:
|
68 |
+
return i
|
69 |
+
return -1
|
70 |
+
|
71 |
+
def _replace_closed_tag(
|
72 |
+
input_tokens: List[Any],
|
73 |
+
start_tags: Union[Any, Tuple[Any]],
|
74 |
+
end_tags: Union[Any, Tuple[Any]],
|
75 |
+
inclusive_replace_func: Callable,
|
76 |
+
exclusive_replace_func: Callable = lambda x: x,
|
77 |
+
):
|
78 |
+
if isinstance(start_tags, (str, int)):
|
79 |
+
start_tags = (start_tags,)
|
80 |
+
if isinstance(end_tags, (str, int)):
|
81 |
+
end_tags = (end_tags,)
|
82 |
+
assert len(start_tags) == len(end_tags)
|
83 |
+
|
84 |
+
output_tokens = []
|
85 |
+
end = 0
|
86 |
+
while True:
|
87 |
+
start = _list_find(input_tokens, start_tags, end)
|
88 |
+
if start == -1:
|
89 |
+
break
|
90 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
|
91 |
+
tag_idx = start_tags.index(input_tokens[start])
|
92 |
+
end = _list_find(input_tokens, (end_tags[tag_idx],), start)
|
93 |
+
if end == -1:
|
94 |
+
raise ValueError("Unclosed image token")
|
95 |
+
output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1]))
|
96 |
+
end += 1
|
97 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
|
98 |
+
return output_tokens
|
99 |
+
|
100 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
101 |
+
"""QWen tokenizer."""
|
102 |
+
|
103 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
vocab_file,
|
108 |
+
errors="replace",
|
109 |
+
image_start_tag='<img>',
|
110 |
+
image_end_tag='</img>',
|
111 |
+
image_pad_tag='<imgpad>',
|
112 |
+
ref_start_tag='<ref>',
|
113 |
+
ref_end_tag='</ref>',
|
114 |
+
box_start_tag='<box>',
|
115 |
+
box_end_tag='</box>',
|
116 |
+
quad_start_tag='<quad>',
|
117 |
+
quad_end_tag='</quad>',
|
118 |
+
**kwargs,
|
119 |
+
):
|
120 |
+
# super().__init__(**kwargs)
|
121 |
+
self.image_start_tag = image_start_tag
|
122 |
+
self.image_end_tag = image_end_tag
|
123 |
+
self.image_pad_tag = image_pad_tag
|
124 |
+
self.ref_start_tag = ref_start_tag
|
125 |
+
self.ref_end_tag = ref_end_tag
|
126 |
+
self.box_start_tag = box_start_tag
|
127 |
+
self.box_end_tag = box_end_tag
|
128 |
+
self.quad_start_tag = quad_start_tag
|
129 |
+
self.quad_end_tag = quad_end_tag
|
130 |
+
self.IMAGE_ST = (
|
131 |
+
ref_start_tag, ref_end_tag,
|
132 |
+
box_start_tag, box_end_tag,
|
133 |
+
quad_start_tag, quad_end_tag,
|
134 |
+
image_start_tag, image_end_tag,
|
135 |
+
image_pad_tag
|
136 |
+
)
|
137 |
+
super().__init__(**kwargs)
|
138 |
+
self.errors = errors # how to handle errors in decoding
|
139 |
+
|
140 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
141 |
+
self.special_tokens = {
|
142 |
+
token: index
|
143 |
+
for index, token in enumerate(
|
144 |
+
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
|
145 |
+
)
|
146 |
+
}
|
147 |
+
self.img_start_id = self.special_tokens[self.image_start_tag]
|
148 |
+
self.img_end_id = self.special_tokens[self.image_end_tag]
|
149 |
+
self.img_pad_id = self.special_tokens[self.image_pad_tag]
|
150 |
+
self.ref_start_id = self.special_tokens[self.ref_start_tag]
|
151 |
+
self.ref_end_id = self.special_tokens[self.ref_end_tag]
|
152 |
+
self.box_start_id = self.special_tokens[self.box_start_tag]
|
153 |
+
self.box_end_id = self.special_tokens[self.box_end_tag]
|
154 |
+
self.quad_start_id = self.special_tokens[self.quad_start_tag]
|
155 |
+
self.quad_end_id = self.special_tokens[self.quad_end_tag]
|
156 |
+
self.image_special_tokens = set([
|
157 |
+
self.ref_start_id, self.ref_end_id, self.box_start_id, self.box_end_id,
|
158 |
+
self.quad_start_id, self.quad_end_id,
|
159 |
+
])
|
160 |
+
|
161 |
+
enc = tiktoken.Encoding(
|
162 |
+
"Qwen",
|
163 |
+
pat_str=PAT_STR,
|
164 |
+
mergeable_ranks=self.mergeable_ranks,
|
165 |
+
special_tokens=self.special_tokens,
|
166 |
+
)
|
167 |
+
assert (
|
168 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
169 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
170 |
+
|
171 |
+
self.decoder = {
|
172 |
+
v: k for k, v in self.mergeable_ranks.items()
|
173 |
+
} # type: dict[int, bytes|str]
|
174 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
175 |
+
|
176 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
177 |
+
|
178 |
+
self.eod_id = self.tokenizer.eot_token
|
179 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
180 |
+
self.im_end_id = self.special_tokens[IMEND]
|
181 |
+
|
182 |
+
def __getstate__(self):
|
183 |
+
# for pickle lovers
|
184 |
+
state = self.__dict__.copy()
|
185 |
+
del state['tokenizer']
|
186 |
+
return state
|
187 |
+
|
188 |
+
def __setstate__(self, state):
|
189 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
190 |
+
self.__dict__.update(state)
|
191 |
+
enc = tiktoken.Encoding(
|
192 |
+
"Qwen",
|
193 |
+
pat_str=PAT_STR,
|
194 |
+
mergeable_ranks=self.mergeable_ranks,
|
195 |
+
special_tokens=self.special_tokens,
|
196 |
+
)
|
197 |
+
self.tokenizer = enc
|
198 |
+
|
199 |
+
|
200 |
+
def __len__(self) -> int:
|
201 |
+
return self.tokenizer.n_vocab
|
202 |
+
|
203 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
204 |
+
return self.mergeable_ranks
|
205 |
+
|
206 |
+
def convert_tokens_to_ids(
|
207 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
208 |
+
) -> List[int]:
|
209 |
+
ids = []
|
210 |
+
if isinstance(tokens, (str, bytes)):
|
211 |
+
if tokens in self.special_tokens:
|
212 |
+
return self.special_tokens[tokens]
|
213 |
+
else:
|
214 |
+
return self.mergeable_ranks.get(tokens)
|
215 |
+
for token in tokens:
|
216 |
+
if token in self.special_tokens:
|
217 |
+
ids.append(self.special_tokens[token])
|
218 |
+
else:
|
219 |
+
ids.append(self.mergeable_ranks.get(token))
|
220 |
+
return ids
|
221 |
+
|
222 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
223 |
+
if not special_tokens and new_tokens:
|
224 |
+
raise ValueError('Adding regular tokens is not supported')
|
225 |
+
for token in new_tokens:
|
226 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
227 |
+
if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
|
228 |
+
raise ValueError('Adding unknown special tokens is not supported')
|
229 |
+
return 0
|
230 |
+
|
231 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
232 |
+
"""
|
233 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
`Tuple(str)`: Paths to the files saved.
|
237 |
+
"""
|
238 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
239 |
+
with open(file_path, "w", encoding="utf8") as w:
|
240 |
+
for k, v in self.mergeable_ranks.items():
|
241 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
242 |
+
w.write(line)
|
243 |
+
return (file_path,)
|
244 |
+
|
245 |
+
def tokenize(
|
246 |
+
self,
|
247 |
+
text: str,
|
248 |
+
allowed_special: Union[Set, str] = "all",
|
249 |
+
disallowed_special: Union[Collection, str] = (),
|
250 |
+
**kwargs,
|
251 |
+
) -> List[Union[bytes, str]]:
|
252 |
+
"""
|
253 |
+
Converts a string in a sequence of tokens.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
text (`str`):
|
257 |
+
The sequence to be encoded.
|
258 |
+
allowed_special (`Literal["all"]` or `set`):
|
259 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
260 |
+
Default to "all".
|
261 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
262 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
263 |
+
Default to an empty tuple.
|
264 |
+
|
265 |
+
kwargs (additional keyword arguments, *optional*):
|
266 |
+
Will be passed to the underlying model specific encode method.
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
`List[bytes|str]`: The list of tokens.
|
270 |
+
"""
|
271 |
+
tokens = []
|
272 |
+
text = unicodedata.normalize("NFC", text)
|
273 |
+
|
274 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
275 |
+
for t in self.tokenizer.encode(
|
276 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
277 |
+
):
|
278 |
+
tokens.append(self.decoder[t])
|
279 |
+
|
280 |
+
def _encode_imgurl(img_tokens):
|
281 |
+
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
282 |
+
img_tokens = img_tokens[1:-1]
|
283 |
+
img_url = b''.join(img_tokens)
|
284 |
+
out_img_tokens = list(map(self.decoder.get, img_url))
|
285 |
+
if len(out_img_tokens) > IMG_TOKEN_SPAN:
|
286 |
+
raise ValueError("The content in {}..{} is too long".format(
|
287 |
+
self.image_start_tag, self.image_end_tag))
|
288 |
+
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
|
289 |
+
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
290 |
+
return out_img_tokens
|
291 |
+
|
292 |
+
return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
293 |
+
|
294 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
295 |
+
"""
|
296 |
+
Converts a sequence of tokens in a single string.
|
297 |
+
"""
|
298 |
+
text = ""
|
299 |
+
temp = b""
|
300 |
+
for t in tokens:
|
301 |
+
if isinstance(t, str):
|
302 |
+
if temp:
|
303 |
+
text += temp.decode("utf-8", errors=self.errors)
|
304 |
+
temp = b""
|
305 |
+
text += t
|
306 |
+
elif isinstance(t, bytes):
|
307 |
+
temp += t
|
308 |
+
else:
|
309 |
+
raise TypeError("token should only be of type types or str")
|
310 |
+
if temp:
|
311 |
+
text += temp.decode("utf-8", errors=self.errors)
|
312 |
+
return text
|
313 |
+
|
314 |
+
@property
|
315 |
+
def vocab_size(self):
|
316 |
+
return self.tokenizer.n_vocab
|
317 |
+
|
318 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
319 |
+
"""Converts an id to a token, special tokens included"""
|
320 |
+
if index in self.decoder:
|
321 |
+
return self.decoder[index]
|
322 |
+
raise ValueError("unknown ids")
|
323 |
+
|
324 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
325 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
326 |
+
if token in self.special_tokens:
|
327 |
+
return self.special_tokens[token]
|
328 |
+
if token in self.mergeable_ranks:
|
329 |
+
return self.mergeable_ranks[token]
|
330 |
+
raise ValueError("unknown token")
|
331 |
+
|
332 |
+
def _tokenize(self, text: str, **kwargs):
|
333 |
+
"""
|
334 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
335 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
336 |
+
|
337 |
+
Do NOT take care of added tokens.
|
338 |
+
"""
|
339 |
+
raise NotImplementedError
|
340 |
+
|
341 |
+
def _decode(
|
342 |
+
self,
|
343 |
+
token_ids: Union[int, List[int]],
|
344 |
+
skip_special_tokens: bool = False,
|
345 |
+
errors: str = None,
|
346 |
+
**kwargs,
|
347 |
+
) -> str:
|
348 |
+
if isinstance(token_ids, int):
|
349 |
+
token_ids = [token_ids]
|
350 |
+
|
351 |
+
def _decode_imgurl(img_token_ids):
|
352 |
+
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
353 |
+
img_token_ids = img_token_ids[1:-1]
|
354 |
+
img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)]
|
355 |
+
img_url = bytes(img_token_ids).decode('utf-8')
|
356 |
+
return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
|
357 |
+
|
358 |
+
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
359 |
+
|
360 |
+
if skip_special_tokens:
|
361 |
+
if kwargs.get('keep_image_special', False):
|
362 |
+
token_ids = [i for i in token_ids if i < self.eod_id
|
363 |
+
or i in self.image_special_tokens]
|
364 |
+
else:
|
365 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
366 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
367 |
+
|
368 |
+
def to_list_format(self, text: str):
|
369 |
+
text = unicodedata.normalize("NFC", text)
|
370 |
+
token_ids = self.tokenizer.encode(
|
371 |
+
text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
|
372 |
+
|
373 |
+
def _encode_vl_info(tokens):
|
374 |
+
if len(tokens) == 0:
|
375 |
+
return []
|
376 |
+
if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
|
377 |
+
key = 'image'
|
378 |
+
elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
|
379 |
+
key = 'ref'
|
380 |
+
elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
|
381 |
+
key = 'box'
|
382 |
+
elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
|
383 |
+
key = 'quad'
|
384 |
+
else:
|
385 |
+
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
386 |
+
return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
|
387 |
+
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
388 |
+
val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8')
|
389 |
+
return [{key: val}]
|
390 |
+
|
391 |
+
return _replace_closed_tag(
|
392 |
+
token_ids,
|
393 |
+
(self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
|
394 |
+
(self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
|
395 |
+
_encode_vl_info,
|
396 |
+
_encode_vl_info,
|
397 |
+
)
|
398 |
+
|
399 |
+
def from_list_format(self, list_format: List[Dict]):
|
400 |
+
text = ''
|
401 |
+
num_images = 0
|
402 |
+
for ele in list_format:
|
403 |
+
if 'image' in ele:
|
404 |
+
num_images += 1
|
405 |
+
text += f'Picture {num_images}: '
|
406 |
+
text += self.image_start_tag + ele['image'] + self.image_end_tag
|
407 |
+
text += '\n'
|
408 |
+
elif 'text' in ele:
|
409 |
+
text += ele['text']
|
410 |
+
elif 'box' in ele:
|
411 |
+
if 'ref' in ele:
|
412 |
+
text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
|
413 |
+
for box in ele['box']:
|
414 |
+
text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
|
415 |
+
else:
|
416 |
+
raise ValueError("Unsupport element: " + str(ele))
|
417 |
+
return text
|
418 |
+
|
419 |
+
def _fetch_latest_picture(self, response, history):
|
420 |
+
if history is None:
|
421 |
+
history = []
|
422 |
+
_history = history + [(response, None)]
|
423 |
+
for q, r in _history[::-1]:
|
424 |
+
for ele in self.to_list_format(q)[::-1]:
|
425 |
+
if 'image' in ele:
|
426 |
+
return ele['image']
|
427 |
+
return None
|
428 |
+
|
429 |
+
def _fetch_all_box_with_ref(self, text):
|
430 |
+
list_format = self.to_list_format(text)
|
431 |
+
output = []
|
432 |
+
for i, ele in enumerate(list_format):
|
433 |
+
if 'box' in ele:
|
434 |
+
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
|
435 |
+
assert len(bbox) == 4
|
436 |
+
output.append({'box': bbox})
|
437 |
+
if i > 0 and 'ref' in list_format[i-1]:
|
438 |
+
output[-1]['ref'] = list_format[i-1]['ref'].strip()
|
439 |
+
return output
|
440 |
+
|
441 |
+
def draw_bbox_on_latest_picture(
|
442 |
+
self,
|
443 |
+
response,
|
444 |
+
history=None,
|
445 |
+
) -> Optional[Image.Image]:
|
446 |
+
image = self._fetch_latest_picture(response, history)
|
447 |
+
if image is None:
|
448 |
+
return None
|
449 |
+
if image.startswith("http://") or image.startswith("https://"):
|
450 |
+
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
451 |
+
h, w = image.height, image.width
|
452 |
+
else:
|
453 |
+
image = np.asarray(Image.open(image).convert("RGB"))
|
454 |
+
h, w = image.shape[0], image.shape[1]
|
455 |
+
visualizer = Visualizer(image)
|
456 |
+
|
457 |
+
boxes = self._fetch_all_box_with_ref(response)
|
458 |
+
if not boxes:
|
459 |
+
return None
|
460 |
+
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
|
461 |
+
for box in boxes:
|
462 |
+
if 'ref' in box: # random new color for new refexps
|
463 |
+
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
|
464 |
+
x1, y1, x2, y2 = box['box']
|
465 |
+
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
|
466 |
+
visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
|
467 |
+
if 'ref' in box:
|
468 |
+
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
|
469 |
+
return visualizer.output
|
470 |
+
|
471 |
+
|
472 |
+
import colorsys
|
473 |
+
import logging
|
474 |
+
import math
|
475 |
+
import numpy as np
|
476 |
+
import matplotlib as mpl
|
477 |
+
import matplotlib.colors as mplc
|
478 |
+
import matplotlib.figure as mplfigure
|
479 |
+
import torch
|
480 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
481 |
+
from PIL import Image
|
482 |
+
import random
|
483 |
+
|
484 |
+
logger = logging.getLogger(__name__)
|
485 |
+
|
486 |
+
|
487 |
+
class VisImage:
|
488 |
+
def __init__(self, img, scale=1.0):
|
489 |
+
self.img = img
|
490 |
+
self.scale = scale
|
491 |
+
self.width, self.height = img.shape[1], img.shape[0]
|
492 |
+
self._setup_figure(img)
|
493 |
+
|
494 |
+
def _setup_figure(self, img):
|
495 |
+
fig = mplfigure.Figure(frameon=False)
|
496 |
+
self.dpi = fig.get_dpi()
|
497 |
+
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation
|
498 |
+
# (https://github.com/matplotlib/matplotlib/issues/15363)
|
499 |
+
fig.set_size_inches(
|
500 |
+
(self.width * self.scale + 1e-2) / self.dpi,
|
501 |
+
(self.height * self.scale + 1e-2) / self.dpi,
|
502 |
+
)
|
503 |
+
self.canvas = FigureCanvasAgg(fig)
|
504 |
+
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
|
505 |
+
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
506 |
+
ax.axis("off")
|
507 |
+
self.fig = fig
|
508 |
+
self.ax = ax
|
509 |
+
self.reset_image(img)
|
510 |
+
|
511 |
+
def reset_image(self, img):
|
512 |
+
img = img.astype("uint8")
|
513 |
+
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
|
514 |
+
|
515 |
+
def save(self, filepath):
|
516 |
+
self.fig.savefig(filepath)
|
517 |
+
|
518 |
+
def get_image(self):
|
519 |
+
canvas = self.canvas
|
520 |
+
s, (width, height) = canvas.print_to_buffer()
|
521 |
+
|
522 |
+
buffer = np.frombuffer(s, dtype="uint8")
|
523 |
+
|
524 |
+
img_rgba = buffer.reshape(height, width, 4)
|
525 |
+
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
526 |
+
return rgb.astype("uint8")
|
527 |
+
|
528 |
+
|
529 |
+
class Visualizer:
|
530 |
+
def __init__(self, img_rgb, metadata=None, scale=1.0):
|
531 |
+
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
532 |
+
self.font_path = FONT_PATH
|
533 |
+
self.output = VisImage(self.img, scale=scale)
|
534 |
+
self.cpu_device = torch.device("cpu")
|
535 |
+
|
536 |
+
# too small texts are useless, therefore clamp to 14
|
537 |
+
self._default_font_size = max(
|
538 |
+
np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
|
539 |
+
)
|
540 |
+
|
541 |
+
def draw_text(
|
542 |
+
self,
|
543 |
+
text,
|
544 |
+
position,
|
545 |
+
*,
|
546 |
+
font_size=None,
|
547 |
+
color="g",
|
548 |
+
horizontal_alignment="center",
|
549 |
+
rotation=0,
|
550 |
+
):
|
551 |
+
if not font_size:
|
552 |
+
font_size = self._default_font_size
|
553 |
+
|
554 |
+
# since the text background is dark, we don't want the text to be dark
|
555 |
+
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
556 |
+
color[np.argmax(color)] = max(0.8, np.max(color))
|
557 |
+
|
558 |
+
x, y = position
|
559 |
+
self.output.ax.text(
|
560 |
+
x,
|
561 |
+
y,
|
562 |
+
text,
|
563 |
+
size=font_size * self.output.scale,
|
564 |
+
fontproperties=FontProperties(fname=self.font_path),
|
565 |
+
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
566 |
+
verticalalignment="top",
|
567 |
+
horizontalalignment=horizontal_alignment,
|
568 |
+
color=color,
|
569 |
+
zorder=10,
|
570 |
+
rotation=rotation,
|
571 |
+
)
|
572 |
+
return self.output
|
573 |
+
|
574 |
+
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
|
575 |
+
|
576 |
+
x0, y0, x1, y1 = box_coord
|
577 |
+
width = x1 - x0
|
578 |
+
height = y1 - y0
|
579 |
+
|
580 |
+
linewidth = max(self._default_font_size / 4, 1)
|
581 |
+
|
582 |
+
self.output.ax.add_patch(
|
583 |
+
mpl.patches.Rectangle(
|
584 |
+
(x0, y0),
|
585 |
+
width,
|
586 |
+
height,
|
587 |
+
fill=False,
|
588 |
+
edgecolor=edge_color,
|
589 |
+
linewidth=linewidth * self.output.scale,
|
590 |
+
alpha=alpha,
|
591 |
+
linestyle=line_style,
|
592 |
+
)
|
593 |
+
)
|
594 |
+
return self.output
|
595 |
+
|
596 |
+
def get_output(self):
|
597 |
+
|
598 |
+
return self.output
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 512,
|
11 |
+
"pad_token": "<|endoftext|>",
|
12 |
+
"padding_side": "right",
|
13 |
+
"tokenizer_class": "QWenTokenizer"
|
14 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 10.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 600,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"learning_rate": 1.6666666666666667e-06,
|
14 |
+
"loss": 0.2396,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.03,
|
19 |
+
"learning_rate": 3.3333333333333333e-06,
|
20 |
+
"loss": 0.2073,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.05,
|
25 |
+
"learning_rate": 5e-06,
|
26 |
+
"loss": 0.1975,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.07,
|
31 |
+
"learning_rate": 6.666666666666667e-06,
|
32 |
+
"loss": 0.2081,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.08,
|
37 |
+
"learning_rate": 8.333333333333334e-06,
|
38 |
+
"loss": 0.1832,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.1,
|
43 |
+
"learning_rate": 1e-05,
|
44 |
+
"loss": 0.2585,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.12,
|
49 |
+
"learning_rate": 9.999930069625869e-06,
|
50 |
+
"loss": 0.2094,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.13,
|
55 |
+
"learning_rate": 9.999720280459576e-06,
|
56 |
+
"loss": 0.163,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.15,
|
61 |
+
"learning_rate": 9.999370638369377e-06,
|
62 |
+
"loss": 0.2687,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.17,
|
67 |
+
"learning_rate": 9.99888115313551e-06,
|
68 |
+
"loss": 0.2199,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.18,
|
73 |
+
"learning_rate": 9.998251838449932e-06,
|
74 |
+
"loss": 0.254,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.2,
|
79 |
+
"learning_rate": 9.997482711915926e-06,
|
80 |
+
"loss": 0.185,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.22,
|
85 |
+
"learning_rate": 9.996573795047616e-06,
|
86 |
+
"loss": 0.1471,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.23,
|
91 |
+
"learning_rate": 9.99552511326936e-06,
|
92 |
+
"loss": 0.2113,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.25,
|
97 |
+
"learning_rate": 9.994336695915041e-06,
|
98 |
+
"loss": 0.1411,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.27,
|
103 |
+
"learning_rate": 9.993008576227248e-06,
|
104 |
+
"loss": 0.215,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.28,
|
109 |
+
"learning_rate": 9.991540791356342e-06,
|
110 |
+
"loss": 0.2258,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.3,
|
115 |
+
"learning_rate": 9.989933382359423e-06,
|
116 |
+
"loss": 0.1529,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.32,
|
121 |
+
"learning_rate": 9.988186394199175e-06,
|
122 |
+
"loss": 0.1812,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.33,
|
127 |
+
"learning_rate": 9.986299875742612e-06,
|
128 |
+
"loss": 0.2054,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.35,
|
133 |
+
"learning_rate": 9.984273879759713e-06,
|
134 |
+
"loss": 0.207,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.37,
|
139 |
+
"learning_rate": 9.982108462921938e-06,
|
140 |
+
"loss": 0.1292,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.38,
|
145 |
+
"learning_rate": 9.979803685800651e-06,
|
146 |
+
"loss": 0.1894,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.4,
|
151 |
+
"learning_rate": 9.977359612865424e-06,
|
152 |
+
"loss": 0.1512,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.42,
|
157 |
+
"learning_rate": 9.97477631248223e-06,
|
158 |
+
"loss": 0.2282,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.43,
|
163 |
+
"learning_rate": 9.972053856911534e-06,
|
164 |
+
"loss": 0.1739,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.45,
|
169 |
+
"learning_rate": 9.969192322306271e-06,
|
170 |
+
"loss": 0.1747,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.47,
|
175 |
+
"learning_rate": 9.966191788709716e-06,
|
176 |
+
"loss": 0.1059,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.48,
|
181 |
+
"learning_rate": 9.963052340053242e-06,
|
182 |
+
"loss": 0.2257,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.5,
|
187 |
+
"learning_rate": 9.959774064153977e-06,
|
188 |
+
"loss": 0.1449,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.52,
|
193 |
+
"learning_rate": 9.956357052712347e-06,
|
194 |
+
"loss": 0.1357,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.53,
|
199 |
+
"learning_rate": 9.952801401309504e-06,
|
200 |
+
"loss": 0.1424,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.55,
|
205 |
+
"learning_rate": 9.949107209404664e-06,
|
206 |
+
"loss": 0.1842,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.57,
|
211 |
+
"learning_rate": 9.945274580332316e-06,
|
212 |
+
"loss": 0.1781,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.58,
|
217 |
+
"learning_rate": 9.941303621299332e-06,
|
218 |
+
"loss": 0.1825,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.6,
|
223 |
+
"learning_rate": 9.937194443381972e-06,
|
224 |
+
"loss": 0.1603,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.62,
|
229 |
+
"learning_rate": 9.932947161522779e-06,
|
230 |
+
"loss": 0.1809,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.63,
|
235 |
+
"learning_rate": 9.928561894527354e-06,
|
236 |
+
"loss": 0.188,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.65,
|
241 |
+
"learning_rate": 9.924038765061042e-06,
|
242 |
+
"loss": 0.112,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.67,
|
247 |
+
"learning_rate": 9.919377899645497e-06,
|
248 |
+
"loss": 0.1943,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.68,
|
253 |
+
"learning_rate": 9.914579428655144e-06,
|
254 |
+
"loss": 0.13,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.7,
|
259 |
+
"learning_rate": 9.909643486313533e-06,
|
260 |
+
"loss": 0.14,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.72,
|
265 |
+
"learning_rate": 9.904570210689584e-06,
|
266 |
+
"loss": 0.1408,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.73,
|
271 |
+
"learning_rate": 9.899359743693715e-06,
|
272 |
+
"loss": 0.1618,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.75,
|
277 |
+
"learning_rate": 9.894012231073895e-06,
|
278 |
+
"loss": 0.1458,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.77,
|
283 |
+
"learning_rate": 9.888527822411543e-06,
|
284 |
+
"loss": 0.1471,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.78,
|
289 |
+
"learning_rate": 9.882906671117363e-06,
|
290 |
+
"loss": 0.1468,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.8,
|
295 |
+
"learning_rate": 9.877148934427037e-06,
|
296 |
+
"loss": 0.1638,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.82,
|
301 |
+
"learning_rate": 9.871254773396837e-06,
|
302 |
+
"loss": 0.1769,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.83,
|
307 |
+
"learning_rate": 9.86522435289912e-06,
|
308 |
+
"loss": 0.1476,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.85,
|
313 |
+
"learning_rate": 9.859057841617709e-06,
|
314 |
+
"loss": 0.1301,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.87,
|
319 |
+
"learning_rate": 9.85275541204318e-06,
|
320 |
+
"loss": 0.1658,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.88,
|
325 |
+
"learning_rate": 9.84631724046804e-06,
|
326 |
+
"loss": 0.1639,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.9,
|
331 |
+
"learning_rate": 9.839743506981783e-06,
|
332 |
+
"loss": 0.1746,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.92,
|
337 |
+
"learning_rate": 9.833034395465866e-06,
|
338 |
+
"loss": 0.1701,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.93,
|
343 |
+
"learning_rate": 9.826190093588564e-06,
|
344 |
+
"loss": 0.1561,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.95,
|
349 |
+
"learning_rate": 9.819210792799711e-06,
|
350 |
+
"loss": 0.1779,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.97,
|
355 |
+
"learning_rate": 9.812096688325354e-06,
|
356 |
+
"loss": 0.1498,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.98,
|
361 |
+
"learning_rate": 9.804847979162286e-06,
|
362 |
+
"loss": 0.1712,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 1.0,
|
367 |
+
"learning_rate": 9.797464868072489e-06,
|
368 |
+
"loss": 0.1423,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 1.02,
|
373 |
+
"learning_rate": 9.789947561577445e-06,
|
374 |
+
"loss": 0.1548,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 1.03,
|
379 |
+
"learning_rate": 9.78229626995238e-06,
|
380 |
+
"loss": 0.143,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.05,
|
385 |
+
"learning_rate": 9.774511207220369e-06,
|
386 |
+
"loss": 0.1465,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.07,
|
391 |
+
"learning_rate": 9.766592591146353e-06,
|
392 |
+
"loss": 0.1667,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 1.08,
|
397 |
+
"learning_rate": 9.758540643231041e-06,
|
398 |
+
"loss": 0.1508,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 1.1,
|
403 |
+
"learning_rate": 9.750355588704728e-06,
|
404 |
+
"loss": 0.1483,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 1.12,
|
409 |
+
"learning_rate": 9.742037656520984e-06,
|
410 |
+
"loss": 0.1231,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 1.13,
|
415 |
+
"learning_rate": 9.733587079350254e-06,
|
416 |
+
"loss": 0.1446,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 1.15,
|
421 |
+
"learning_rate": 9.725004093573343e-06,
|
422 |
+
"loss": 0.1363,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 1.17,
|
427 |
+
"learning_rate": 9.716288939274818e-06,
|
428 |
+
"loss": 0.1272,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.18,
|
433 |
+
"learning_rate": 9.707441860236278e-06,
|
434 |
+
"loss": 0.1652,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 1.2,
|
439 |
+
"learning_rate": 9.698463103929542e-06,
|
440 |
+
"loss": 0.1762,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 1.22,
|
445 |
+
"learning_rate": 9.689352921509725e-06,
|
446 |
+
"loss": 0.1773,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 1.23,
|
451 |
+
"learning_rate": 9.680111567808212e-06,
|
452 |
+
"loss": 0.1138,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 1.25,
|
457 |
+
"learning_rate": 9.670739301325534e-06,
|
458 |
+
"loss": 0.1497,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.27,
|
463 |
+
"learning_rate": 9.66123638422413e-06,
|
464 |
+
"loss": 0.1163,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 1.28,
|
469 |
+
"learning_rate": 9.651603082321019e-06,
|
470 |
+
"loss": 0.1411,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.3,
|
475 |
+
"learning_rate": 9.641839665080363e-06,
|
476 |
+
"loss": 0.1309,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 1.32,
|
481 |
+
"learning_rate": 9.631946405605932e-06,
|
482 |
+
"loss": 0.1285,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 1.33,
|
487 |
+
"learning_rate": 9.621923580633462e-06,
|
488 |
+
"loss": 0.1472,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.35,
|
493 |
+
"learning_rate": 9.611771470522908e-06,
|
494 |
+
"loss": 0.1654,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 1.37,
|
499 |
+
"learning_rate": 9.601490359250616e-06,
|
500 |
+
"loss": 0.1636,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 1.38,
|
505 |
+
"learning_rate": 9.591080534401371e-06,
|
506 |
+
"loss": 0.1448,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 1.4,
|
511 |
+
"learning_rate": 9.580542287160348e-06,
|
512 |
+
"loss": 0.1302,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.42,
|
517 |
+
"learning_rate": 9.56987591230498e-06,
|
518 |
+
"loss": 0.1363,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.43,
|
523 |
+
"learning_rate": 9.559081708196696e-06,
|
524 |
+
"loss": 0.1276,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 1.45,
|
529 |
+
"learning_rate": 9.548159976772593e-06,
|
530 |
+
"loss": 0.1095,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 1.47,
|
535 |
+
"learning_rate": 9.537111023536973e-06,
|
536 |
+
"loss": 0.1052,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 1.48,
|
541 |
+
"learning_rate": 9.525935157552813e-06,
|
542 |
+
"loss": 0.1609,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 1.5,
|
547 |
+
"learning_rate": 9.514632691433108e-06,
|
548 |
+
"loss": 0.1164,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.52,
|
553 |
+
"learning_rate": 9.503203941332128e-06,
|
554 |
+
"loss": 0.1277,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.53,
|
559 |
+
"learning_rate": 9.491649226936586e-06,
|
560 |
+
"loss": 0.13,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 1.55,
|
565 |
+
"learning_rate": 9.47996887145668e-06,
|
566 |
+
"loss": 0.1407,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 1.57,
|
571 |
+
"learning_rate": 9.468163201617063e-06,
|
572 |
+
"loss": 0.1278,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 1.58,
|
577 |
+
"learning_rate": 9.456232547647695e-06,
|
578 |
+
"loss": 0.1114,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 1.6,
|
583 |
+
"learning_rate": 9.444177243274619e-06,
|
584 |
+
"loss": 0.1358,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 1.62,
|
589 |
+
"learning_rate": 9.43199762571061e-06,
|
590 |
+
"loss": 0.1187,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 1.63,
|
595 |
+
"learning_rate": 9.419694035645753e-06,
|
596 |
+
"loss": 0.1518,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.65,
|
601 |
+
"learning_rate": 9.40726681723791e-06,
|
602 |
+
"loss": 0.1261,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 1.67,
|
607 |
+
"learning_rate": 9.394716318103098e-06,
|
608 |
+
"loss": 0.1149,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 1.68,
|
613 |
+
"learning_rate": 9.382042889305754e-06,
|
614 |
+
"loss": 0.124,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 1.7,
|
619 |
+
"learning_rate": 9.369246885348926e-06,
|
620 |
+
"loss": 0.1344,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 1.72,
|
625 |
+
"learning_rate": 9.35632866416435e-06,
|
626 |
+
"loss": 0.0972,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 1.73,
|
631 |
+
"learning_rate": 9.343288587102444e-06,
|
632 |
+
"loss": 0.1138,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 1.75,
|
637 |
+
"learning_rate": 9.330127018922195e-06,
|
638 |
+
"loss": 0.1479,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.77,
|
643 |
+
"learning_rate": 9.316844327780955e-06,
|
644 |
+
"loss": 0.1345,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 1.78,
|
649 |
+
"learning_rate": 9.303440885224153e-06,
|
650 |
+
"loss": 0.1184,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 1.8,
|
655 |
+
"learning_rate": 9.289917066174887e-06,
|
656 |
+
"loss": 0.0922,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 1.82,
|
661 |
+
"learning_rate": 9.276273248923446e-06,
|
662 |
+
"loss": 0.096,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 1.83,
|
667 |
+
"learning_rate": 9.262509815116732e-06,
|
668 |
+
"loss": 0.1213,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.85,
|
673 |
+
"learning_rate": 9.248627149747573e-06,
|
674 |
+
"loss": 0.1172,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 1.87,
|
679 |
+
"learning_rate": 9.234625641143962e-06,
|
680 |
+
"loss": 0.1318,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.88,
|
685 |
+
"learning_rate": 9.220505680958194e-06,
|
686 |
+
"loss": 0.1044,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 1.9,
|
691 |
+
"learning_rate": 9.206267664155906e-06,
|
692 |
+
"loss": 0.131,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.92,
|
697 |
+
"learning_rate": 9.191911989005038e-06,
|
698 |
+
"loss": 0.1391,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.93,
|
703 |
+
"learning_rate": 9.177439057064684e-06,
|
704 |
+
"loss": 0.1194,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 1.95,
|
709 |
+
"learning_rate": 9.162849273173857e-06,
|
710 |
+
"loss": 0.1123,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 1.97,
|
715 |
+
"learning_rate": 9.148143045440181e-06,
|
716 |
+
"loss": 0.1444,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 1.98,
|
721 |
+
"learning_rate": 9.133320785228457e-06,
|
722 |
+
"loss": 0.121,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 2.0,
|
727 |
+
"learning_rate": 9.118382907149164e-06,
|
728 |
+
"loss": 0.1261,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 2.02,
|
733 |
+
"learning_rate": 9.103329829046866e-06,
|
734 |
+
"loss": 0.1203,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 2.03,
|
739 |
+
"learning_rate": 9.088161971988517e-06,
|
740 |
+
"loss": 0.108,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 2.05,
|
745 |
+
"learning_rate": 9.07287976025168e-06,
|
746 |
+
"loss": 0.0694,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 2.07,
|
751 |
+
"learning_rate": 9.057483621312671e-06,
|
752 |
+
"loss": 0.0995,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 2.08,
|
757 |
+
"learning_rate": 9.041973985834595e-06,
|
758 |
+
"loss": 0.1043,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 2.1,
|
763 |
+
"learning_rate": 9.026351287655294e-06,
|
764 |
+
"loss": 0.1378,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 2.12,
|
769 |
+
"learning_rate": 9.01061596377522e-06,
|
770 |
+
"loss": 0.1135,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 2.13,
|
775 |
+
"learning_rate": 8.994768454345207e-06,
|
776 |
+
"loss": 0.1234,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 2.15,
|
781 |
+
"learning_rate": 8.978809202654161e-06,
|
782 |
+
"loss": 0.118,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 2.17,
|
787 |
+
"learning_rate": 8.96273865511666e-06,
|
788 |
+
"loss": 0.1136,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 2.18,
|
793 |
+
"learning_rate": 8.94655726126046e-06,
|
794 |
+
"loss": 0.0982,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 2.2,
|
799 |
+
"learning_rate": 8.930265473713939e-06,
|
800 |
+
"loss": 0.079,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 2.22,
|
805 |
+
"learning_rate": 8.91386374819341e-06,
|
806 |
+
"loss": 0.0974,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 2.23,
|
811 |
+
"learning_rate": 8.897352543490396e-06,
|
812 |
+
"loss": 0.1122,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 2.25,
|
817 |
+
"learning_rate": 8.880732321458785e-06,
|
818 |
+
"loss": 0.0958,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 2.27,
|
823 |
+
"learning_rate": 8.864003547001916e-06,
|
824 |
+
"loss": 0.0825,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 2.28,
|
829 |
+
"learning_rate": 8.847166688059572e-06,
|
830 |
+
"loss": 0.1226,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 2.3,
|
835 |
+
"learning_rate": 8.83022221559489e-06,
|
836 |
+
"loss": 0.1335,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 2.32,
|
841 |
+
"learning_rate": 8.81317060358119e-06,
|
842 |
+
"loss": 0.0939,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 2.33,
|
847 |
+
"learning_rate": 8.796012328988716e-06,
|
848 |
+
"loss": 0.125,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 2.35,
|
853 |
+
"learning_rate": 8.778747871771293e-06,
|
854 |
+
"loss": 0.114,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 2.37,
|
859 |
+
"learning_rate": 8.7613777148529e-06,
|
860 |
+
"loss": 0.0861,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 2.38,
|
865 |
+
"learning_rate": 8.743902344114163e-06,
|
866 |
+
"loss": 0.1096,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 2.4,
|
871 |
+
"learning_rate": 8.726322248378775e-06,
|
872 |
+
"loss": 0.0803,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 2.42,
|
877 |
+
"learning_rate": 8.708637919399798e-06,
|
878 |
+
"loss": 0.0833,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 2.43,
|
883 |
+
"learning_rate": 8.690849851845933e-06,
|
884 |
+
"loss": 0.0882,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 2.45,
|
889 |
+
"learning_rate": 8.672958543287666e-06,
|
890 |
+
"loss": 0.1513,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 2.47,
|
895 |
+
"learning_rate": 8.65496449418336e-06,
|
896 |
+
"loss": 0.0996,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 2.48,
|
901 |
+
"learning_rate": 8.636868207865244e-06,
|
902 |
+
"loss": 0.136,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 2.5,
|
907 |
+
"learning_rate": 8.61867019052535e-06,
|
908 |
+
"loss": 0.0888,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 2.52,
|
913 |
+
"learning_rate": 8.600370951201345e-06,
|
914 |
+
"loss": 0.1044,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 2.53,
|
919 |
+
"learning_rate": 8.581971001762287e-06,
|
920 |
+
"loss": 0.0964,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 2.55,
|
925 |
+
"learning_rate": 8.563470856894316e-06,
|
926 |
+
"loss": 0.0946,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 2.57,
|
931 |
+
"learning_rate": 8.54487103408625e-06,
|
932 |
+
"loss": 0.1264,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 2.58,
|
937 |
+
"learning_rate": 8.526172053615122e-06,
|
938 |
+
"loss": 0.1173,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 2.6,
|
943 |
+
"learning_rate": 8.507374438531606e-06,
|
944 |
+
"loss": 0.1075,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 2.62,
|
949 |
+
"learning_rate": 8.48847871464541e-06,
|
950 |
+
"loss": 0.0625,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 2.63,
|
955 |
+
"learning_rate": 8.469485410510545e-06,
|
956 |
+
"loss": 0.0951,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 2.65,
|
961 |
+
"learning_rate": 8.450395057410561e-06,
|
962 |
+
"loss": 0.1103,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 2.67,
|
967 |
+
"learning_rate": 8.43120818934367e-06,
|
968 |
+
"loss": 0.0794,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 2.68,
|
973 |
+
"learning_rate": 8.411925343007815e-06,
|
974 |
+
"loss": 0.0699,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 2.7,
|
979 |
+
"learning_rate": 8.392547057785662e-06,
|
980 |
+
"loss": 0.1138,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 2.72,
|
985 |
+
"learning_rate": 8.373073875729504e-06,
|
986 |
+
"loss": 0.1351,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 2.73,
|
991 |
+
"learning_rate": 8.353506341546106e-06,
|
992 |
+
"loss": 0.0853,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 2.75,
|
997 |
+
"learning_rate": 8.33384500258146e-06,
|
998 |
+
"loss": 0.1151,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 2.77,
|
1003 |
+
"learning_rate": 8.314090408805481e-06,
|
1004 |
+
"loss": 0.043,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 2.78,
|
1009 |
+
"learning_rate": 8.294243112796625e-06,
|
1010 |
+
"loss": 0.0859,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 2.8,
|
1015 |
+
"learning_rate": 8.274303669726427e-06,
|
1016 |
+
"loss": 0.0728,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 2.82,
|
1021 |
+
"learning_rate": 8.254272637343968e-06,
|
1022 |
+
"loss": 0.0809,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 2.83,
|
1027 |
+
"learning_rate": 8.234150575960288e-06,
|
1028 |
+
"loss": 0.0699,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 2.85,
|
1033 |
+
"learning_rate": 8.213938048432697e-06,
|
1034 |
+
"loss": 0.1079,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 2.87,
|
1039 |
+
"learning_rate": 8.193635620149041e-06,
|
1040 |
+
"loss": 0.0708,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 2.88,
|
1045 |
+
"learning_rate": 8.173243859011881e-06,
|
1046 |
+
"loss": 0.1004,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 2.9,
|
1051 |
+
"learning_rate": 8.152763335422612e-06,
|
1052 |
+
"loss": 0.0615,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 2.92,
|
1057 |
+
"learning_rate": 8.132194622265508e-06,
|
1058 |
+
"loss": 0.089,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.93,
|
1063 |
+
"learning_rate": 8.111538294891684e-06,
|
1064 |
+
"loss": 0.1052,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 2.95,
|
1069 |
+
"learning_rate": 8.090794931103026e-06,
|
1070 |
+
"loss": 0.0871,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 2.97,
|
1075 |
+
"learning_rate": 8.06996511113601e-06,
|
1076 |
+
"loss": 0.1042,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 2.98,
|
1081 |
+
"learning_rate": 8.049049417645478e-06,
|
1082 |
+
"loss": 0.0477,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 3.0,
|
1087 |
+
"learning_rate": 8.028048435688333e-06,
|
1088 |
+
"loss": 0.0636,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 3.02,
|
1093 |
+
"learning_rate": 8.006962752707193e-06,
|
1094 |
+
"loss": 0.0742,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 3.03,
|
1099 |
+
"learning_rate": 7.985792958513932e-06,
|
1100 |
+
"loss": 0.0574,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 3.05,
|
1105 |
+
"learning_rate": 7.964539645273204e-06,
|
1106 |
+
"loss": 0.0414,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 3.07,
|
1111 |
+
"learning_rate": 7.943203407485864e-06,
|
1112 |
+
"loss": 0.0505,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 3.08,
|
1117 |
+
"learning_rate": 7.921784841972355e-06,
|
1118 |
+
"loss": 0.0961,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 3.1,
|
1123 |
+
"learning_rate": 7.900284547855992e-06,
|
1124 |
+
"loss": 0.0781,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 3.12,
|
1129 |
+
"learning_rate": 7.87870312654622e-06,
|
1130 |
+
"loss": 0.0598,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 3.13,
|
1135 |
+
"learning_rate": 7.857041181721788e-06,
|
1136 |
+
"loss": 0.0832,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 3.15,
|
1141 |
+
"learning_rate": 7.835299319313854e-06,
|
1142 |
+
"loss": 0.049,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 3.17,
|
1147 |
+
"learning_rate": 7.813478147489052e-06,
|
1148 |
+
"loss": 0.056,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 3.18,
|
1153 |
+
"learning_rate": 7.791578276632461e-06,
|
1154 |
+
"loss": 0.0552,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 3.2,
|
1159 |
+
"learning_rate": 7.769600319330553e-06,
|
1160 |
+
"loss": 0.0669,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 3.22,
|
1165 |
+
"learning_rate": 7.747544890354031e-06,
|
1166 |
+
"loss": 0.0643,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 3.23,
|
1171 |
+
"learning_rate": 7.725412606640658e-06,
|
1172 |
+
"loss": 0.0586,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 3.25,
|
1177 |
+
"learning_rate": 7.703204087277989e-06,
|
1178 |
+
"loss": 0.0892,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 3.27,
|
1183 |
+
"learning_rate": 7.680919953486047e-06,
|
1184 |
+
"loss": 0.0879,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 3.28,
|
1189 |
+
"learning_rate": 7.65856082859996e-06,
|
1190 |
+
"loss": 0.0763,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 3.3,
|
1195 |
+
"learning_rate": 7.636127338052513e-06,
|
1196 |
+
"loss": 0.072,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 3.32,
|
1201 |
+
"learning_rate": 7.613620109356663e-06,
|
1202 |
+
"loss": 0.0738,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 3.33,
|
1207 |
+
"learning_rate": 7.5910397720879785e-06,
|
1208 |
+
"loss": 0.0829,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 3.35,
|
1213 |
+
"learning_rate": 7.568386957867033e-06,
|
1214 |
+
"loss": 0.0622,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 3.37,
|
1219 |
+
"learning_rate": 7.545662300341736e-06,
|
1220 |
+
"loss": 0.0665,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 3.38,
|
1225 |
+
"learning_rate": 7.522866435169606e-06,
|
1226 |
+
"loss": 0.0769,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 3.4,
|
1231 |
+
"learning_rate": 7.500000000000001e-06,
|
1232 |
+
"loss": 0.0253,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 3.42,
|
1237 |
+
"learning_rate": 7.477063634456263e-06,
|
1238 |
+
"loss": 0.0213,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 3.43,
|
1243 |
+
"learning_rate": 7.454057980117842e-06,
|
1244 |
+
"loss": 0.0702,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 3.45,
|
1249 |
+
"learning_rate": 7.430983680502344e-06,
|
1250 |
+
"loss": 0.0982,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 3.47,
|
1255 |
+
"learning_rate": 7.407841381047533e-06,
|
1256 |
+
"loss": 0.0552,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 3.48,
|
1261 |
+
"learning_rate": 7.38463172909327e-06,
|
1262 |
+
"loss": 0.0744,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 3.5,
|
1267 |
+
"learning_rate": 7.361355373863415e-06,
|
1268 |
+
"loss": 0.0463,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 3.52,
|
1273 |
+
"learning_rate": 7.3380129664476574e-06,
|
1274 |
+
"loss": 0.0986,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 3.53,
|
1279 |
+
"learning_rate": 7.314605159783313e-06,
|
1280 |
+
"loss": 0.0715,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 3.55,
|
1285 |
+
"learning_rate": 7.291132608637053e-06,
|
1286 |
+
"loss": 0.05,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 3.57,
|
1291 |
+
"learning_rate": 7.2675959695865896e-06,
|
1292 |
+
"loss": 0.046,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 3.58,
|
1297 |
+
"learning_rate": 7.243995901002312e-06,
|
1298 |
+
"loss": 0.051,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 3.6,
|
1303 |
+
"learning_rate": 7.2203330630288714e-06,
|
1304 |
+
"loss": 0.0274,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 3.62,
|
1309 |
+
"learning_rate": 7.196608117566714e-06,
|
1310 |
+
"loss": 0.0327,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 3.63,
|
1315 |
+
"learning_rate": 7.172821728253563e-06,
|
1316 |
+
"loss": 0.0467,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 3.65,
|
1321 |
+
"learning_rate": 7.148974560445859e-06,
|
1322 |
+
"loss": 0.0435,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 3.67,
|
1327 |
+
"learning_rate": 7.1250672812001505e-06,
|
1328 |
+
"loss": 0.0794,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 3.68,
|
1333 |
+
"learning_rate": 7.1011005592544314e-06,
|
1334 |
+
"loss": 0.0072,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 3.7,
|
1339 |
+
"learning_rate": 7.0770750650094335e-06,
|
1340 |
+
"loss": 0.0974,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 3.72,
|
1345 |
+
"learning_rate": 7.0529914705098755e-06,
|
1346 |
+
"loss": 0.0889,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 3.73,
|
1351 |
+
"learning_rate": 7.02885044942567e-06,
|
1352 |
+
"loss": 0.0819,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 3.75,
|
1357 |
+
"learning_rate": 7.004652677033069e-06,
|
1358 |
+
"loss": 0.0599,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 3.77,
|
1363 |
+
"learning_rate": 6.980398830195785e-06,
|
1364 |
+
"loss": 0.0198,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 3.78,
|
1369 |
+
"learning_rate": 6.95608958734605e-06,
|
1370 |
+
"loss": 0.0512,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 3.8,
|
1375 |
+
"learning_rate": 6.931725628465643e-06,
|
1376 |
+
"loss": 0.0743,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 3.82,
|
1381 |
+
"learning_rate": 6.90730763506687e-06,
|
1382 |
+
"loss": 0.0887,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 3.83,
|
1387 |
+
"learning_rate": 6.882836290173493e-06,
|
1388 |
+
"loss": 0.0337,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 3.85,
|
1393 |
+
"learning_rate": 6.858312278301638e-06,
|
1394 |
+
"loss": 0.0356,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 3.87,
|
1399 |
+
"learning_rate": 6.833736285440632e-06,
|
1400 |
+
"loss": 0.0387,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 3.88,
|
1405 |
+
"learning_rate": 6.809108999033825e-06,
|
1406 |
+
"loss": 0.027,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 3.9,
|
1411 |
+
"learning_rate": 6.78443110795936e-06,
|
1412 |
+
"loss": 0.0262,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 3.92,
|
1417 |
+
"learning_rate": 6.759703302510898e-06,
|
1418 |
+
"loss": 0.0314,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 3.93,
|
1423 |
+
"learning_rate": 6.734926274378313e-06,
|
1424 |
+
"loss": 0.0691,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 3.95,
|
1429 |
+
"learning_rate": 6.710100716628345e-06,
|
1430 |
+
"loss": 0.0528,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 3.97,
|
1435 |
+
"learning_rate": 6.685227323685209e-06,
|
1436 |
+
"loss": 0.0522,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 3.98,
|
1441 |
+
"learning_rate": 6.660306791311177e-06,
|
1442 |
+
"loss": 0.052,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 4.0,
|
1447 |
+
"learning_rate": 6.635339816587109e-06,
|
1448 |
+
"loss": 0.0454,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 4.02,
|
1453 |
+
"learning_rate": 6.610327097892959e-06,
|
1454 |
+
"loss": 0.0161,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 4.03,
|
1459 |
+
"learning_rate": 6.5852693348882345e-06,
|
1460 |
+
"loss": 0.0154,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 4.05,
|
1465 |
+
"learning_rate": 6.560167228492436e-06,
|
1466 |
+
"loss": 0.0682,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 4.07,
|
1471 |
+
"learning_rate": 6.535021480865439e-06,
|
1472 |
+
"loss": 0.0074,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 4.08,
|
1477 |
+
"learning_rate": 6.5098327953878585e-06,
|
1478 |
+
"loss": 0.0618,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 4.1,
|
1483 |
+
"learning_rate": 6.484601876641375e-06,
|
1484 |
+
"loss": 0.0378,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 4.12,
|
1489 |
+
"learning_rate": 6.459329430389023e-06,
|
1490 |
+
"loss": 0.0436,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 4.13,
|
1495 |
+
"learning_rate": 6.434016163555452e-06,
|
1496 |
+
"loss": 0.0143,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 4.15,
|
1501 |
+
"learning_rate": 6.408662784207149e-06,
|
1502 |
+
"loss": 0.0446,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 4.17,
|
1507 |
+
"learning_rate": 6.383270001532636e-06,
|
1508 |
+
"loss": 0.0124,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 4.18,
|
1513 |
+
"learning_rate": 6.357838525822629e-06,
|
1514 |
+
"loss": 0.043,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 4.2,
|
1519 |
+
"learning_rate": 6.332369068450175e-06,
|
1520 |
+
"loss": 0.0243,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 4.22,
|
1525 |
+
"learning_rate": 6.306862341850746e-06,
|
1526 |
+
"loss": 0.0199,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 4.23,
|
1531 |
+
"learning_rate": 6.2813190595023135e-06,
|
1532 |
+
"loss": 0.0609,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 4.25,
|
1537 |
+
"learning_rate": 6.255739935905396e-06,
|
1538 |
+
"loss": 0.0373,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 4.27,
|
1543 |
+
"learning_rate": 6.230125686563068e-06,
|
1544 |
+
"loss": 0.0216,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 4.28,
|
1549 |
+
"learning_rate": 6.204477027960942e-06,
|
1550 |
+
"loss": 0.0485,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 4.3,
|
1555 |
+
"learning_rate": 6.178794677547138e-06,
|
1556 |
+
"loss": 0.0184,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 4.32,
|
1561 |
+
"learning_rate": 6.153079353712201e-06,
|
1562 |
+
"loss": 0.0303,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 4.33,
|
1567 |
+
"learning_rate": 6.127331775769023e-06,
|
1568 |
+
"loss": 0.048,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 4.35,
|
1573 |
+
"learning_rate": 6.101552663932704e-06,
|
1574 |
+
"loss": 0.0352,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 4.37,
|
1579 |
+
"learning_rate": 6.07574273930042e-06,
|
1580 |
+
"loss": 0.0195,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 4.38,
|
1585 |
+
"learning_rate": 6.049902723831243e-06,
|
1586 |
+
"loss": 0.0322,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 4.4,
|
1591 |
+
"learning_rate": 6.024033340325954e-06,
|
1592 |
+
"loss": 0.0385,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 4.42,
|
1597 |
+
"learning_rate": 5.998135312406821e-06,
|
1598 |
+
"loss": 0.0678,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 4.43,
|
1603 |
+
"learning_rate": 5.972209364497355e-06,
|
1604 |
+
"loss": 0.0341,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 4.45,
|
1609 |
+
"learning_rate": 5.946256221802052e-06,
|
1610 |
+
"loss": 0.019,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 4.47,
|
1615 |
+
"learning_rate": 5.920276610286102e-06,
|
1616 |
+
"loss": 0.0372,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 4.48,
|
1621 |
+
"learning_rate": 5.894271256655089e-06,
|
1622 |
+
"loss": 0.0278,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 4.5,
|
1627 |
+
"learning_rate": 5.8682408883346535e-06,
|
1628 |
+
"loss": 0.0079,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 4.52,
|
1633 |
+
"learning_rate": 5.842186233450153e-06,
|
1634 |
+
"loss": 0.0168,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 4.53,
|
1639 |
+
"learning_rate": 5.816108020806297e-06,
|
1640 |
+
"loss": 0.0289,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 4.55,
|
1645 |
+
"learning_rate": 5.79000697986675e-06,
|
1646 |
+
"loss": 0.0483,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 4.57,
|
1651 |
+
"learning_rate": 5.763883840733736e-06,
|
1652 |
+
"loss": 0.019,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 4.58,
|
1657 |
+
"learning_rate": 5.737739334127611e-06,
|
1658 |
+
"loss": 0.0182,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 4.6,
|
1663 |
+
"learning_rate": 5.711574191366427e-06,
|
1664 |
+
"loss": 0.0339,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 4.62,
|
1669 |
+
"learning_rate": 5.685389144345474e-06,
|
1670 |
+
"loss": 0.012,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 4.63,
|
1675 |
+
"learning_rate": 5.659184925516802e-06,
|
1676 |
+
"loss": 0.0154,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 4.65,
|
1681 |
+
"learning_rate": 5.632962267868747e-06,
|
1682 |
+
"loss": 0.0178,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 4.67,
|
1687 |
+
"learning_rate": 5.60672190490541e-06,
|
1688 |
+
"loss": 0.0142,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 4.68,
|
1693 |
+
"learning_rate": 5.5804645706261515e-06,
|
1694 |
+
"loss": 0.0175,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 4.7,
|
1699 |
+
"learning_rate": 5.5541909995050554e-06,
|
1700 |
+
"loss": 0.0092,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 4.72,
|
1705 |
+
"learning_rate": 5.527901926470386e-06,
|
1706 |
+
"loss": 0.0102,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 4.73,
|
1711 |
+
"learning_rate": 5.5015980868840254e-06,
|
1712 |
+
"loss": 0.0027,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 4.75,
|
1717 |
+
"learning_rate": 5.475280216520913e-06,
|
1718 |
+
"loss": 0.0214,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 4.77,
|
1723 |
+
"learning_rate": 5.448949051548459e-06,
|
1724 |
+
"loss": 0.0354,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 4.78,
|
1729 |
+
"learning_rate": 5.4226053285059466e-06,
|
1730 |
+
"loss": 0.0121,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 4.8,
|
1735 |
+
"learning_rate": 5.396249784283943e-06,
|
1736 |
+
"loss": 0.0403,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 4.82,
|
1741 |
+
"learning_rate": 5.369883156103672e-06,
|
1742 |
+
"loss": 0.0216,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 4.83,
|
1747 |
+
"learning_rate": 5.343506181496405e-06,
|
1748 |
+
"loss": 0.019,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 4.85,
|
1753 |
+
"learning_rate": 5.317119598282823e-06,
|
1754 |
+
"loss": 0.0176,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 4.87,
|
1759 |
+
"learning_rate": 5.290724144552379e-06,
|
1760 |
+
"loss": 0.0098,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 4.88,
|
1765 |
+
"learning_rate": 5.264320558642657e-06,
|
1766 |
+
"loss": 0.058,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 4.9,
|
1771 |
+
"learning_rate": 5.237909579118713e-06,
|
1772 |
+
"loss": 0.0116,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 4.92,
|
1777 |
+
"learning_rate": 5.2114919447524155e-06,
|
1778 |
+
"loss": 0.0131,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 4.93,
|
1783 |
+
"learning_rate": 5.185068394501791e-06,
|
1784 |
+
"loss": 0.0202,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 4.95,
|
1789 |
+
"learning_rate": 5.15863966749034e-06,
|
1790 |
+
"loss": 0.007,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 4.97,
|
1795 |
+
"learning_rate": 5.132206502986368e-06,
|
1796 |
+
"loss": 0.0135,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 4.98,
|
1801 |
+
"learning_rate": 5.105769640382309e-06,
|
1802 |
+
"loss": 0.0064,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 5.0,
|
1807 |
+
"learning_rate": 5.07932981917404e-06,
|
1808 |
+
"loss": 0.0091,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 5.02,
|
1813 |
+
"learning_rate": 5.052887778940199e-06,
|
1814 |
+
"loss": 0.0057,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 5.03,
|
1819 |
+
"learning_rate": 5.026444259321489e-06,
|
1820 |
+
"loss": 0.0136,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 5.05,
|
1825 |
+
"learning_rate": 5e-06,
|
1826 |
+
"loss": 0.003,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 5.07,
|
1831 |
+
"learning_rate": 4.973555740678512e-06,
|
1832 |
+
"loss": 0.0096,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 5.08,
|
1837 |
+
"learning_rate": 4.947112221059803e-06,
|
1838 |
+
"loss": 0.0278,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 5.1,
|
1843 |
+
"learning_rate": 4.9206701808259605e-06,
|
1844 |
+
"loss": 0.0257,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 5.12,
|
1849 |
+
"learning_rate": 4.894230359617693e-06,
|
1850 |
+
"loss": 0.0029,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 5.13,
|
1855 |
+
"learning_rate": 4.867793497013634e-06,
|
1856 |
+
"loss": 0.0127,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 5.15,
|
1861 |
+
"learning_rate": 4.841360332509663e-06,
|
1862 |
+
"loss": 0.0065,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 5.17,
|
1867 |
+
"learning_rate": 4.81493160549821e-06,
|
1868 |
+
"loss": 0.0159,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 5.18,
|
1873 |
+
"learning_rate": 4.788508055247585e-06,
|
1874 |
+
"loss": 0.0085,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 5.2,
|
1879 |
+
"learning_rate": 4.762090420881289e-06,
|
1880 |
+
"loss": 0.0065,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 5.22,
|
1885 |
+
"learning_rate": 4.735679441357343e-06,
|
1886 |
+
"loss": 0.0074,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 5.23,
|
1891 |
+
"learning_rate": 4.7092758554476215e-06,
|
1892 |
+
"loss": 0.016,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 5.25,
|
1897 |
+
"learning_rate": 4.682880401717178e-06,
|
1898 |
+
"loss": 0.0074,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 5.27,
|
1903 |
+
"learning_rate": 4.6564938185035954e-06,
|
1904 |
+
"loss": 0.005,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 5.28,
|
1909 |
+
"learning_rate": 4.630116843896329e-06,
|
1910 |
+
"loss": 0.0056,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 5.3,
|
1915 |
+
"learning_rate": 4.603750215716057e-06,
|
1916 |
+
"loss": 0.0043,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 5.32,
|
1921 |
+
"learning_rate": 4.577394671494054e-06,
|
1922 |
+
"loss": 0.0063,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 5.33,
|
1927 |
+
"learning_rate": 4.551050948451542e-06,
|
1928 |
+
"loss": 0.0039,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 5.35,
|
1933 |
+
"learning_rate": 4.524719783479088e-06,
|
1934 |
+
"loss": 0.004,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 5.37,
|
1939 |
+
"learning_rate": 4.498401913115975e-06,
|
1940 |
+
"loss": 0.0236,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 5.38,
|
1945 |
+
"learning_rate": 4.472098073529617e-06,
|
1946 |
+
"loss": 0.004,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 5.4,
|
1951 |
+
"learning_rate": 4.445809000494945e-06,
|
1952 |
+
"loss": 0.0222,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 5.42,
|
1957 |
+
"learning_rate": 4.4195354293738484e-06,
|
1958 |
+
"loss": 0.0112,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 5.43,
|
1963 |
+
"learning_rate": 4.393278095094591e-06,
|
1964 |
+
"loss": 0.0101,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 5.45,
|
1969 |
+
"learning_rate": 4.367037732131254e-06,
|
1970 |
+
"loss": 0.0115,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 5.47,
|
1975 |
+
"learning_rate": 4.340815074483199e-06,
|
1976 |
+
"loss": 0.0028,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 5.48,
|
1981 |
+
"learning_rate": 4.314610855654528e-06,
|
1982 |
+
"loss": 0.0088,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 5.5,
|
1987 |
+
"learning_rate": 4.2884258086335755e-06,
|
1988 |
+
"loss": 0.0025,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 5.52,
|
1993 |
+
"learning_rate": 4.26226066587239e-06,
|
1994 |
+
"loss": 0.0166,
|
1995 |
+
"step": 331
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 5.53,
|
1999 |
+
"learning_rate": 4.2361161592662655e-06,
|
2000 |
+
"loss": 0.0093,
|
2001 |
+
"step": 332
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 5.55,
|
2005 |
+
"learning_rate": 4.209993020133251e-06,
|
2006 |
+
"loss": 0.0092,
|
2007 |
+
"step": 333
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 5.57,
|
2011 |
+
"learning_rate": 4.183891979193703e-06,
|
2012 |
+
"loss": 0.0097,
|
2013 |
+
"step": 334
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 5.58,
|
2017 |
+
"learning_rate": 4.1578137665498485e-06,
|
2018 |
+
"loss": 0.0044,
|
2019 |
+
"step": 335
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 5.6,
|
2023 |
+
"learning_rate": 4.131759111665349e-06,
|
2024 |
+
"loss": 0.008,
|
2025 |
+
"step": 336
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 5.62,
|
2029 |
+
"learning_rate": 4.1057287433449145e-06,
|
2030 |
+
"loss": 0.0326,
|
2031 |
+
"step": 337
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 5.63,
|
2035 |
+
"learning_rate": 4.079723389713899e-06,
|
2036 |
+
"loss": 0.0037,
|
2037 |
+
"step": 338
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 5.65,
|
2041 |
+
"learning_rate": 4.053743778197951e-06,
|
2042 |
+
"loss": 0.0109,
|
2043 |
+
"step": 339
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 5.67,
|
2047 |
+
"learning_rate": 4.027790635502646e-06,
|
2048 |
+
"loss": 0.0015,
|
2049 |
+
"step": 340
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 5.68,
|
2053 |
+
"learning_rate": 4.00186468759318e-06,
|
2054 |
+
"loss": 0.006,
|
2055 |
+
"step": 341
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 5.7,
|
2059 |
+
"learning_rate": 3.975966659674048e-06,
|
2060 |
+
"loss": 0.0029,
|
2061 |
+
"step": 342
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 5.72,
|
2065 |
+
"learning_rate": 3.950097276168758e-06,
|
2066 |
+
"loss": 0.0036,
|
2067 |
+
"step": 343
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 5.73,
|
2071 |
+
"learning_rate": 3.924257260699583e-06,
|
2072 |
+
"loss": 0.0037,
|
2073 |
+
"step": 344
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 5.75,
|
2077 |
+
"learning_rate": 3.898447336067297e-06,
|
2078 |
+
"loss": 0.0146,
|
2079 |
+
"step": 345
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 5.77,
|
2083 |
+
"learning_rate": 3.872668224230979e-06,
|
2084 |
+
"loss": 0.0193,
|
2085 |
+
"step": 346
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 5.78,
|
2089 |
+
"learning_rate": 3.8469206462878e-06,
|
2090 |
+
"loss": 0.001,
|
2091 |
+
"step": 347
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 5.8,
|
2095 |
+
"learning_rate": 3.821205322452863e-06,
|
2096 |
+
"loss": 0.0143,
|
2097 |
+
"step": 348
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 5.82,
|
2101 |
+
"learning_rate": 3.7955229720390595e-06,
|
2102 |
+
"loss": 0.0022,
|
2103 |
+
"step": 349
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 5.83,
|
2107 |
+
"learning_rate": 3.769874313436933e-06,
|
2108 |
+
"loss": 0.0062,
|
2109 |
+
"step": 350
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 5.85,
|
2113 |
+
"learning_rate": 3.7442600640946045e-06,
|
2114 |
+
"loss": 0.0029,
|
2115 |
+
"step": 351
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 5.87,
|
2119 |
+
"learning_rate": 3.7186809404976877e-06,
|
2120 |
+
"loss": 0.0108,
|
2121 |
+
"step": 352
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 5.88,
|
2125 |
+
"learning_rate": 3.6931376581492564e-06,
|
2126 |
+
"loss": 0.0076,
|
2127 |
+
"step": 353
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 5.9,
|
2131 |
+
"learning_rate": 3.667630931549826e-06,
|
2132 |
+
"loss": 0.0025,
|
2133 |
+
"step": 354
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 5.92,
|
2137 |
+
"learning_rate": 3.6421614741773702e-06,
|
2138 |
+
"loss": 0.0051,
|
2139 |
+
"step": 355
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 5.93,
|
2143 |
+
"learning_rate": 3.6167299984673655e-06,
|
2144 |
+
"loss": 0.0073,
|
2145 |
+
"step": 356
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 5.95,
|
2149 |
+
"learning_rate": 3.5913372157928515e-06,
|
2150 |
+
"loss": 0.0081,
|
2151 |
+
"step": 357
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 5.97,
|
2155 |
+
"learning_rate": 3.5659838364445505e-06,
|
2156 |
+
"loss": 0.0129,
|
2157 |
+
"step": 358
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 5.98,
|
2161 |
+
"learning_rate": 3.5406705696109777e-06,
|
2162 |
+
"loss": 0.0028,
|
2163 |
+
"step": 359
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 6.0,
|
2167 |
+
"learning_rate": 3.5153981233586277e-06,
|
2168 |
+
"loss": 0.0128,
|
2169 |
+
"step": 360
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 6.02,
|
2173 |
+
"learning_rate": 3.4901672046121428e-06,
|
2174 |
+
"loss": 0.0101,
|
2175 |
+
"step": 361
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 6.03,
|
2179 |
+
"learning_rate": 3.4649785191345613e-06,
|
2180 |
+
"loss": 0.0034,
|
2181 |
+
"step": 362
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 6.05,
|
2185 |
+
"learning_rate": 3.439832771507565e-06,
|
2186 |
+
"loss": 0.0035,
|
2187 |
+
"step": 363
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 6.07,
|
2191 |
+
"learning_rate": 3.4147306651117663e-06,
|
2192 |
+
"loss": 0.0021,
|
2193 |
+
"step": 364
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 6.08,
|
2197 |
+
"learning_rate": 3.389672902107044e-06,
|
2198 |
+
"loss": 0.0031,
|
2199 |
+
"step": 365
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 6.1,
|
2203 |
+
"learning_rate": 3.3646601834128924e-06,
|
2204 |
+
"loss": 0.0047,
|
2205 |
+
"step": 366
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 6.12,
|
2209 |
+
"learning_rate": 3.3396932086888245e-06,
|
2210 |
+
"loss": 0.0213,
|
2211 |
+
"step": 367
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 6.13,
|
2215 |
+
"learning_rate": 3.3147726763147913e-06,
|
2216 |
+
"loss": 0.0136,
|
2217 |
+
"step": 368
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 6.15,
|
2221 |
+
"learning_rate": 3.289899283371657e-06,
|
2222 |
+
"loss": 0.0213,
|
2223 |
+
"step": 369
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 6.17,
|
2227 |
+
"learning_rate": 3.2650737256216885e-06,
|
2228 |
+
"loss": 0.0021,
|
2229 |
+
"step": 370
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 6.18,
|
2233 |
+
"learning_rate": 3.240296697489104e-06,
|
2234 |
+
"loss": 0.0023,
|
2235 |
+
"step": 371
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 6.2,
|
2239 |
+
"learning_rate": 3.2155688920406415e-06,
|
2240 |
+
"loss": 0.0028,
|
2241 |
+
"step": 372
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 6.22,
|
2245 |
+
"learning_rate": 3.190891000966176e-06,
|
2246 |
+
"loss": 0.0023,
|
2247 |
+
"step": 373
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 6.23,
|
2251 |
+
"learning_rate": 3.16626371455937e-06,
|
2252 |
+
"loss": 0.0015,
|
2253 |
+
"step": 374
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 6.25,
|
2257 |
+
"learning_rate": 3.141687721698363e-06,
|
2258 |
+
"loss": 0.0018,
|
2259 |
+
"step": 375
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 6.27,
|
2263 |
+
"learning_rate": 3.1171637098265063e-06,
|
2264 |
+
"loss": 0.0049,
|
2265 |
+
"step": 376
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 6.28,
|
2269 |
+
"learning_rate": 3.092692364933132e-06,
|
2270 |
+
"loss": 0.0054,
|
2271 |
+
"step": 377
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 6.3,
|
2275 |
+
"learning_rate": 3.0682743715343565e-06,
|
2276 |
+
"loss": 0.0018,
|
2277 |
+
"step": 378
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 6.32,
|
2281 |
+
"learning_rate": 3.043910412653952e-06,
|
2282 |
+
"loss": 0.0053,
|
2283 |
+
"step": 379
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 6.33,
|
2287 |
+
"learning_rate": 3.019601169804216e-06,
|
2288 |
+
"loss": 0.0034,
|
2289 |
+
"step": 380
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 6.35,
|
2293 |
+
"learning_rate": 2.995347322966933e-06,
|
2294 |
+
"loss": 0.0076,
|
2295 |
+
"step": 381
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 6.37,
|
2299 |
+
"learning_rate": 2.9711495505743317e-06,
|
2300 |
+
"loss": 0.0068,
|
2301 |
+
"step": 382
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 6.38,
|
2305 |
+
"learning_rate": 2.9470085294901244e-06,
|
2306 |
+
"loss": 0.0035,
|
2307 |
+
"step": 383
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 6.4,
|
2311 |
+
"learning_rate": 2.9229249349905686e-06,
|
2312 |
+
"loss": 0.0029,
|
2313 |
+
"step": 384
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 6.42,
|
2317 |
+
"learning_rate": 2.898899440745569e-06,
|
2318 |
+
"loss": 0.0047,
|
2319 |
+
"step": 385
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 6.43,
|
2323 |
+
"learning_rate": 2.8749327187998516e-06,
|
2324 |
+
"loss": 0.0043,
|
2325 |
+
"step": 386
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 6.45,
|
2329 |
+
"learning_rate": 2.851025439554142e-06,
|
2330 |
+
"loss": 0.0026,
|
2331 |
+
"step": 387
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 6.47,
|
2335 |
+
"learning_rate": 2.8271782717464413e-06,
|
2336 |
+
"loss": 0.0075,
|
2337 |
+
"step": 388
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 6.48,
|
2341 |
+
"learning_rate": 2.803391882433288e-06,
|
2342 |
+
"loss": 0.0027,
|
2343 |
+
"step": 389
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 6.5,
|
2347 |
+
"learning_rate": 2.7796669369711294e-06,
|
2348 |
+
"loss": 0.0063,
|
2349 |
+
"step": 390
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 6.52,
|
2353 |
+
"learning_rate": 2.7560040989976894e-06,
|
2354 |
+
"loss": 0.0051,
|
2355 |
+
"step": 391
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 6.53,
|
2359 |
+
"learning_rate": 2.7324040304134125e-06,
|
2360 |
+
"loss": 0.0076,
|
2361 |
+
"step": 392
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 6.55,
|
2365 |
+
"learning_rate": 2.708867391362948e-06,
|
2366 |
+
"loss": 0.0022,
|
2367 |
+
"step": 393
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 6.57,
|
2371 |
+
"learning_rate": 2.685394840216688e-06,
|
2372 |
+
"loss": 0.004,
|
2373 |
+
"step": 394
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 6.58,
|
2377 |
+
"learning_rate": 2.6619870335523434e-06,
|
2378 |
+
"loss": 0.0023,
|
2379 |
+
"step": 395
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 6.6,
|
2383 |
+
"learning_rate": 2.6386446261365874e-06,
|
2384 |
+
"loss": 0.009,
|
2385 |
+
"step": 396
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 6.62,
|
2389 |
+
"learning_rate": 2.6153682709067317e-06,
|
2390 |
+
"loss": 0.0013,
|
2391 |
+
"step": 397
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 6.63,
|
2395 |
+
"learning_rate": 2.5921586189524694e-06,
|
2396 |
+
"loss": 0.0029,
|
2397 |
+
"step": 398
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 6.65,
|
2401 |
+
"learning_rate": 2.5690163194976576e-06,
|
2402 |
+
"loss": 0.0052,
|
2403 |
+
"step": 399
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 6.67,
|
2407 |
+
"learning_rate": 2.5459420198821604e-06,
|
2408 |
+
"loss": 0.0039,
|
2409 |
+
"step": 400
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 6.68,
|
2413 |
+
"learning_rate": 2.5229363655437394e-06,
|
2414 |
+
"loss": 0.0087,
|
2415 |
+
"step": 401
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 6.7,
|
2419 |
+
"learning_rate": 2.5000000000000015e-06,
|
2420 |
+
"loss": 0.0046,
|
2421 |
+
"step": 402
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 6.72,
|
2425 |
+
"learning_rate": 2.4771335648303944e-06,
|
2426 |
+
"loss": 0.0009,
|
2427 |
+
"step": 403
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 6.73,
|
2431 |
+
"learning_rate": 2.454337699658267e-06,
|
2432 |
+
"loss": 0.0011,
|
2433 |
+
"step": 404
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 6.75,
|
2437 |
+
"learning_rate": 2.4316130421329696e-06,
|
2438 |
+
"loss": 0.0026,
|
2439 |
+
"step": 405
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 6.77,
|
2443 |
+
"learning_rate": 2.4089602279120224e-06,
|
2444 |
+
"loss": 0.003,
|
2445 |
+
"step": 406
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 6.78,
|
2449 |
+
"learning_rate": 2.3863798906433396e-06,
|
2450 |
+
"loss": 0.0022,
|
2451 |
+
"step": 407
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 6.8,
|
2455 |
+
"learning_rate": 2.363872661947488e-06,
|
2456 |
+
"loss": 0.0026,
|
2457 |
+
"step": 408
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 6.82,
|
2461 |
+
"learning_rate": 2.3414391714000435e-06,
|
2462 |
+
"loss": 0.0019,
|
2463 |
+
"step": 409
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 6.83,
|
2467 |
+
"learning_rate": 2.319080046513954e-06,
|
2468 |
+
"loss": 0.0019,
|
2469 |
+
"step": 410
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 6.85,
|
2473 |
+
"learning_rate": 2.296795912722014e-06,
|
2474 |
+
"loss": 0.014,
|
2475 |
+
"step": 411
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 6.87,
|
2479 |
+
"learning_rate": 2.274587393359342e-06,
|
2480 |
+
"loss": 0.0018,
|
2481 |
+
"step": 412
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 6.88,
|
2485 |
+
"learning_rate": 2.2524551096459703e-06,
|
2486 |
+
"loss": 0.0011,
|
2487 |
+
"step": 413
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 6.9,
|
2491 |
+
"learning_rate": 2.230399680669449e-06,
|
2492 |
+
"loss": 0.0029,
|
2493 |
+
"step": 414
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 6.92,
|
2497 |
+
"learning_rate": 2.2084217233675386e-06,
|
2498 |
+
"loss": 0.0032,
|
2499 |
+
"step": 415
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 6.93,
|
2503 |
+
"learning_rate": 2.1865218525109496e-06,
|
2504 |
+
"loss": 0.0023,
|
2505 |
+
"step": 416
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 6.95,
|
2509 |
+
"learning_rate": 2.1647006806861472e-06,
|
2510 |
+
"loss": 0.0046,
|
2511 |
+
"step": 417
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 6.97,
|
2515 |
+
"learning_rate": 2.1429588182782147e-06,
|
2516 |
+
"loss": 0.0014,
|
2517 |
+
"step": 418
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 6.98,
|
2521 |
+
"learning_rate": 2.1212968734537813e-06,
|
2522 |
+
"loss": 0.0042,
|
2523 |
+
"step": 419
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 7.0,
|
2527 |
+
"learning_rate": 2.09971545214401e-06,
|
2528 |
+
"loss": 0.0056,
|
2529 |
+
"step": 420
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 7.02,
|
2533 |
+
"learning_rate": 2.0782151580276467e-06,
|
2534 |
+
"loss": 0.0116,
|
2535 |
+
"step": 421
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 7.03,
|
2539 |
+
"learning_rate": 2.0567965925141366e-06,
|
2540 |
+
"loss": 0.0018,
|
2541 |
+
"step": 422
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 7.05,
|
2545 |
+
"learning_rate": 2.0354603547267985e-06,
|
2546 |
+
"loss": 0.0055,
|
2547 |
+
"step": 423
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 7.07,
|
2551 |
+
"learning_rate": 2.0142070414860704e-06,
|
2552 |
+
"loss": 0.0021,
|
2553 |
+
"step": 424
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 7.08,
|
2557 |
+
"learning_rate": 1.9930372472928095e-06,
|
2558 |
+
"loss": 0.0012,
|
2559 |
+
"step": 425
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 7.1,
|
2563 |
+
"learning_rate": 1.971951564311668e-06,
|
2564 |
+
"loss": 0.0031,
|
2565 |
+
"step": 426
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 7.12,
|
2569 |
+
"learning_rate": 1.9509505823545232e-06,
|
2570 |
+
"loss": 0.0063,
|
2571 |
+
"step": 427
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 7.13,
|
2575 |
+
"learning_rate": 1.9300348888639915e-06,
|
2576 |
+
"loss": 0.0022,
|
2577 |
+
"step": 428
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 7.15,
|
2581 |
+
"learning_rate": 1.9092050688969736e-06,
|
2582 |
+
"loss": 0.0017,
|
2583 |
+
"step": 429
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 7.17,
|
2587 |
+
"learning_rate": 1.8884617051083183e-06,
|
2588 |
+
"loss": 0.0007,
|
2589 |
+
"step": 430
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 7.18,
|
2593 |
+
"learning_rate": 1.867805377734494e-06,
|
2594 |
+
"loss": 0.0084,
|
2595 |
+
"step": 431
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 7.2,
|
2599 |
+
"learning_rate": 1.8472366645773892e-06,
|
2600 |
+
"loss": 0.0025,
|
2601 |
+
"step": 432
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 7.22,
|
2605 |
+
"learning_rate": 1.826756140988119e-06,
|
2606 |
+
"loss": 0.0062,
|
2607 |
+
"step": 433
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 7.23,
|
2611 |
+
"learning_rate": 1.8063643798509594e-06,
|
2612 |
+
"loss": 0.0026,
|
2613 |
+
"step": 434
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 7.25,
|
2617 |
+
"learning_rate": 1.7860619515673034e-06,
|
2618 |
+
"loss": 0.0016,
|
2619 |
+
"step": 435
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 7.27,
|
2623 |
+
"learning_rate": 1.7658494240397127e-06,
|
2624 |
+
"loss": 0.0135,
|
2625 |
+
"step": 436
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 7.28,
|
2629 |
+
"learning_rate": 1.7457273626560328e-06,
|
2630 |
+
"loss": 0.0012,
|
2631 |
+
"step": 437
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 7.3,
|
2635 |
+
"learning_rate": 1.7256963302735752e-06,
|
2636 |
+
"loss": 0.0031,
|
2637 |
+
"step": 438
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 7.32,
|
2641 |
+
"learning_rate": 1.7057568872033758e-06,
|
2642 |
+
"loss": 0.0018,
|
2643 |
+
"step": 439
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 7.33,
|
2647 |
+
"learning_rate": 1.68590959119452e-06,
|
2648 |
+
"loss": 0.0012,
|
2649 |
+
"step": 440
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 7.35,
|
2653 |
+
"learning_rate": 1.6661549974185426e-06,
|
2654 |
+
"loss": 0.0042,
|
2655 |
+
"step": 441
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 7.37,
|
2659 |
+
"learning_rate": 1.646493658453896e-06,
|
2660 |
+
"loss": 0.0011,
|
2661 |
+
"step": 442
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 7.38,
|
2665 |
+
"learning_rate": 1.626926124270497e-06,
|
2666 |
+
"loss": 0.0023,
|
2667 |
+
"step": 443
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 7.4,
|
2671 |
+
"learning_rate": 1.6074529422143398e-06,
|
2672 |
+
"loss": 0.002,
|
2673 |
+
"step": 444
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 7.42,
|
2677 |
+
"learning_rate": 1.5880746569921867e-06,
|
2678 |
+
"loss": 0.0015,
|
2679 |
+
"step": 445
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 7.43,
|
2683 |
+
"learning_rate": 1.5687918106563326e-06,
|
2684 |
+
"loss": 0.0009,
|
2685 |
+
"step": 446
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 7.45,
|
2689 |
+
"learning_rate": 1.549604942589441e-06,
|
2690 |
+
"loss": 0.0013,
|
2691 |
+
"step": 447
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 7.47,
|
2695 |
+
"learning_rate": 1.5305145894894547e-06,
|
2696 |
+
"loss": 0.0026,
|
2697 |
+
"step": 448
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 7.48,
|
2701 |
+
"learning_rate": 1.5115212853545924e-06,
|
2702 |
+
"loss": 0.0016,
|
2703 |
+
"step": 449
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 7.5,
|
2707 |
+
"learning_rate": 1.4926255614683931e-06,
|
2708 |
+
"loss": 0.0027,
|
2709 |
+
"step": 450
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 7.52,
|
2713 |
+
"learning_rate": 1.4738279463848803e-06,
|
2714 |
+
"loss": 0.0023,
|
2715 |
+
"step": 451
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 7.53,
|
2719 |
+
"learning_rate": 1.4551289659137497e-06,
|
2720 |
+
"loss": 0.0018,
|
2721 |
+
"step": 452
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 7.55,
|
2725 |
+
"learning_rate": 1.4365291431056871e-06,
|
2726 |
+
"loss": 0.0018,
|
2727 |
+
"step": 453
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 7.57,
|
2731 |
+
"learning_rate": 1.4180289982377138e-06,
|
2732 |
+
"loss": 0.0175,
|
2733 |
+
"step": 454
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 7.58,
|
2737 |
+
"learning_rate": 1.3996290487986568e-06,
|
2738 |
+
"loss": 0.0112,
|
2739 |
+
"step": 455
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 7.6,
|
2743 |
+
"learning_rate": 1.3813298094746491e-06,
|
2744 |
+
"loss": 0.0031,
|
2745 |
+
"step": 456
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 7.62,
|
2749 |
+
"learning_rate": 1.3631317921347564e-06,
|
2750 |
+
"loss": 0.0051,
|
2751 |
+
"step": 457
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 7.63,
|
2755 |
+
"learning_rate": 1.345035505816642e-06,
|
2756 |
+
"loss": 0.0023,
|
2757 |
+
"step": 458
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 7.65,
|
2761 |
+
"learning_rate": 1.3270414567123342e-06,
|
2762 |
+
"loss": 0.008,
|
2763 |
+
"step": 459
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 7.67,
|
2767 |
+
"learning_rate": 1.3091501481540676e-06,
|
2768 |
+
"loss": 0.0047,
|
2769 |
+
"step": 460
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 7.68,
|
2773 |
+
"learning_rate": 1.2913620806002026e-06,
|
2774 |
+
"loss": 0.0023,
|
2775 |
+
"step": 461
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 7.7,
|
2779 |
+
"learning_rate": 1.2736777516212267e-06,
|
2780 |
+
"loss": 0.0035,
|
2781 |
+
"step": 462
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 7.72,
|
2785 |
+
"learning_rate": 1.2560976558858372e-06,
|
2786 |
+
"loss": 0.0031,
|
2787 |
+
"step": 463
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 7.73,
|
2791 |
+
"learning_rate": 1.238622285147103e-06,
|
2792 |
+
"loss": 0.0022,
|
2793 |
+
"step": 464
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 7.75,
|
2797 |
+
"learning_rate": 1.2212521282287093e-06,
|
2798 |
+
"loss": 0.0028,
|
2799 |
+
"step": 465
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 7.77,
|
2803 |
+
"learning_rate": 1.2039876710112847e-06,
|
2804 |
+
"loss": 0.0034,
|
2805 |
+
"step": 466
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 7.78,
|
2809 |
+
"learning_rate": 1.1868293964188099e-06,
|
2810 |
+
"loss": 0.002,
|
2811 |
+
"step": 467
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 7.8,
|
2815 |
+
"learning_rate": 1.1697777844051105e-06,
|
2816 |
+
"loss": 0.0039,
|
2817 |
+
"step": 468
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 7.82,
|
2821 |
+
"learning_rate": 1.152833311940429e-06,
|
2822 |
+
"loss": 0.0078,
|
2823 |
+
"step": 469
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 7.83,
|
2827 |
+
"learning_rate": 1.135996452998085e-06,
|
2828 |
+
"loss": 0.0021,
|
2829 |
+
"step": 470
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 7.85,
|
2833 |
+
"learning_rate": 1.1192676785412154e-06,
|
2834 |
+
"loss": 0.0038,
|
2835 |
+
"step": 471
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 7.87,
|
2839 |
+
"learning_rate": 1.1026474565096068e-06,
|
2840 |
+
"loss": 0.003,
|
2841 |
+
"step": 472
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 7.88,
|
2845 |
+
"learning_rate": 1.0861362518065915e-06,
|
2846 |
+
"loss": 0.0021,
|
2847 |
+
"step": 473
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 7.9,
|
2851 |
+
"learning_rate": 1.0697345262860638e-06,
|
2852 |
+
"loss": 0.0012,
|
2853 |
+
"step": 474
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 7.92,
|
2857 |
+
"learning_rate": 1.0534427387395391e-06,
|
2858 |
+
"loss": 0.0024,
|
2859 |
+
"step": 475
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 7.93,
|
2863 |
+
"learning_rate": 1.0372613448833429e-06,
|
2864 |
+
"loss": 0.0033,
|
2865 |
+
"step": 476
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 7.95,
|
2869 |
+
"learning_rate": 1.0211907973458391e-06,
|
2870 |
+
"loss": 0.0013,
|
2871 |
+
"step": 477
|
2872 |
+
},
|
2873 |
+
{
|
2874 |
+
"epoch": 7.97,
|
2875 |
+
"learning_rate": 1.0052315456547934e-06,
|
2876 |
+
"loss": 0.0025,
|
2877 |
+
"step": 478
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 7.98,
|
2881 |
+
"learning_rate": 9.893840362247809e-07,
|
2882 |
+
"loss": 0.0033,
|
2883 |
+
"step": 479
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 8.0,
|
2887 |
+
"learning_rate": 9.73648712344707e-07,
|
2888 |
+
"loss": 0.0018,
|
2889 |
+
"step": 480
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 8.02,
|
2893 |
+
"learning_rate": 9.580260141654057e-07,
|
2894 |
+
"loss": 0.0072,
|
2895 |
+
"step": 481
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 8.03,
|
2899 |
+
"learning_rate": 9.425163786873292e-07,
|
2900 |
+
"loss": 0.0014,
|
2901 |
+
"step": 482
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 8.05,
|
2905 |
+
"learning_rate": 9.271202397483214e-07,
|
2906 |
+
"loss": 0.0019,
|
2907 |
+
"step": 483
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 8.07,
|
2911 |
+
"learning_rate": 9.118380280114858e-07,
|
2912 |
+
"loss": 0.0021,
|
2913 |
+
"step": 484
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 8.08,
|
2917 |
+
"learning_rate": 8.966701709531344e-07,
|
2918 |
+
"loss": 0.0031,
|
2919 |
+
"step": 485
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 8.1,
|
2923 |
+
"learning_rate": 8.816170928508367e-07,
|
2924 |
+
"loss": 0.0041,
|
2925 |
+
"step": 486
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 8.12,
|
2929 |
+
"learning_rate": 8.666792147715447e-07,
|
2930 |
+
"loss": 0.0013,
|
2931 |
+
"step": 487
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 8.13,
|
2935 |
+
"learning_rate": 8.518569545598198e-07,
|
2936 |
+
"loss": 0.002,
|
2937 |
+
"step": 488
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 8.15,
|
2941 |
+
"learning_rate": 8.371507268261436e-07,
|
2942 |
+
"loss": 0.004,
|
2943 |
+
"step": 489
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 8.17,
|
2947 |
+
"learning_rate": 8.225609429353187e-07,
|
2948 |
+
"loss": 0.0023,
|
2949 |
+
"step": 490
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 8.18,
|
2953 |
+
"learning_rate": 8.08088010994963e-07,
|
2954 |
+
"loss": 0.001,
|
2955 |
+
"step": 491
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 8.2,
|
2959 |
+
"learning_rate": 7.937323358440935e-07,
|
2960 |
+
"loss": 0.0025,
|
2961 |
+
"step": 492
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 8.22,
|
2965 |
+
"learning_rate": 7.79494319041808e-07,
|
2966 |
+
"loss": 0.0025,
|
2967 |
+
"step": 493
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 8.23,
|
2971 |
+
"learning_rate": 7.653743588560387e-07,
|
2972 |
+
"loss": 0.0041,
|
2973 |
+
"step": 494
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 8.25,
|
2977 |
+
"learning_rate": 7.513728502524286e-07,
|
2978 |
+
"loss": 0.0055,
|
2979 |
+
"step": 495
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 8.27,
|
2983 |
+
"learning_rate": 7.374901848832683e-07,
|
2984 |
+
"loss": 0.0079,
|
2985 |
+
"step": 496
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 8.28,
|
2989 |
+
"learning_rate": 7.237267510765549e-07,
|
2990 |
+
"loss": 0.0023,
|
2991 |
+
"step": 497
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 8.3,
|
2995 |
+
"learning_rate": 7.100829338251147e-07,
|
2996 |
+
"loss": 0.0064,
|
2997 |
+
"step": 498
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 8.32,
|
3001 |
+
"learning_rate": 6.965591147758482e-07,
|
3002 |
+
"loss": 0.0025,
|
3003 |
+
"step": 499
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 8.33,
|
3007 |
+
"learning_rate": 6.831556722190453e-07,
|
3008 |
+
"loss": 0.0017,
|
3009 |
+
"step": 500
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 8.35,
|
3013 |
+
"learning_rate": 6.698729810778065e-07,
|
3014 |
+
"loss": 0.0019,
|
3015 |
+
"step": 501
|
3016 |
+
},
|
3017 |
+
{
|
3018 |
+
"epoch": 8.37,
|
3019 |
+
"learning_rate": 6.567114128975571e-07,
|
3020 |
+
"loss": 0.0015,
|
3021 |
+
"step": 502
|
3022 |
+
},
|
3023 |
+
{
|
3024 |
+
"epoch": 8.38,
|
3025 |
+
"learning_rate": 6.436713358356506e-07,
|
3026 |
+
"loss": 0.0029,
|
3027 |
+
"step": 503
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 8.4,
|
3031 |
+
"learning_rate": 6.307531146510754e-07,
|
3032 |
+
"loss": 0.0025,
|
3033 |
+
"step": 504
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 8.42,
|
3037 |
+
"learning_rate": 6.179571106942466e-07,
|
3038 |
+
"loss": 0.0141,
|
3039 |
+
"step": 505
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 8.43,
|
3043 |
+
"learning_rate": 6.052836818969027e-07,
|
3044 |
+
"loss": 0.0025,
|
3045 |
+
"step": 506
|
3046 |
+
},
|
3047 |
+
{
|
3048 |
+
"epoch": 8.45,
|
3049 |
+
"learning_rate": 5.927331827620902e-07,
|
3050 |
+
"loss": 0.0033,
|
3051 |
+
"step": 507
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 8.47,
|
3055 |
+
"learning_rate": 5.803059643542491e-07,
|
3056 |
+
"loss": 0.0034,
|
3057 |
+
"step": 508
|
3058 |
+
},
|
3059 |
+
{
|
3060 |
+
"epoch": 8.48,
|
3061 |
+
"learning_rate": 5.680023742893926e-07,
|
3062 |
+
"loss": 0.0023,
|
3063 |
+
"step": 509
|
3064 |
+
},
|
3065 |
+
{
|
3066 |
+
"epoch": 8.5,
|
3067 |
+
"learning_rate": 5.558227567253832e-07,
|
3068 |
+
"loss": 0.0009,
|
3069 |
+
"step": 510
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 8.52,
|
3073 |
+
"learning_rate": 5.437674523523056e-07,
|
3074 |
+
"loss": 0.0025,
|
3075 |
+
"step": 511
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 8.53,
|
3079 |
+
"learning_rate": 5.318367983829393e-07,
|
3080 |
+
"loss": 0.0021,
|
3081 |
+
"step": 512
|
3082 |
+
},
|
3083 |
+
{
|
3084 |
+
"epoch": 8.55,
|
3085 |
+
"learning_rate": 5.200311285433213e-07,
|
3086 |
+
"loss": 0.0028,
|
3087 |
+
"step": 513
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 8.57,
|
3091 |
+
"learning_rate": 5.083507730634152e-07,
|
3092 |
+
"loss": 0.0025,
|
3093 |
+
"step": 514
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 8.58,
|
3097 |
+
"learning_rate": 4.967960586678722e-07,
|
3098 |
+
"loss": 0.0024,
|
3099 |
+
"step": 515
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 8.6,
|
3103 |
+
"learning_rate": 4.853673085668947e-07,
|
3104 |
+
"loss": 0.0022,
|
3105 |
+
"step": 516
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 8.62,
|
3109 |
+
"learning_rate": 4.740648424471872e-07,
|
3110 |
+
"loss": 0.0024,
|
3111 |
+
"step": 517
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 8.63,
|
3115 |
+
"learning_rate": 4.628889764630279e-07,
|
3116 |
+
"loss": 0.0021,
|
3117 |
+
"step": 518
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 8.65,
|
3121 |
+
"learning_rate": 4.5184002322740784e-07,
|
3122 |
+
"loss": 0.0037,
|
3123 |
+
"step": 519
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 8.67,
|
3127 |
+
"learning_rate": 4.4091829180330503e-07,
|
3128 |
+
"loss": 0.0019,
|
3129 |
+
"step": 520
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 8.68,
|
3133 |
+
"learning_rate": 4.3012408769502134e-07,
|
3134 |
+
"loss": 0.0109,
|
3135 |
+
"step": 521
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 8.7,
|
3139 |
+
"learning_rate": 4.194577128396521e-07,
|
3140 |
+
"loss": 0.0014,
|
3141 |
+
"step": 522
|
3142 |
+
},
|
3143 |
+
{
|
3144 |
+
"epoch": 8.72,
|
3145 |
+
"learning_rate": 4.089194655986306e-07,
|
3146 |
+
"loss": 0.0013,
|
3147 |
+
"step": 523
|
3148 |
+
},
|
3149 |
+
{
|
3150 |
+
"epoch": 8.73,
|
3151 |
+
"learning_rate": 3.985096407493838e-07,
|
3152 |
+
"loss": 0.0041,
|
3153 |
+
"step": 524
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 8.75,
|
3157 |
+
"learning_rate": 3.882285294770938e-07,
|
3158 |
+
"loss": 0.0097,
|
3159 |
+
"step": 525
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 8.77,
|
3163 |
+
"learning_rate": 3.7807641936653984e-07,
|
3164 |
+
"loss": 0.0021,
|
3165 |
+
"step": 526
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 8.78,
|
3169 |
+
"learning_rate": 3.680535943940688e-07,
|
3170 |
+
"loss": 0.0036,
|
3171 |
+
"step": 527
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 8.8,
|
3175 |
+
"learning_rate": 3.581603349196372e-07,
|
3176 |
+
"loss": 0.0017,
|
3177 |
+
"step": 528
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 8.82,
|
3181 |
+
"learning_rate": 3.48396917678982e-07,
|
3182 |
+
"loss": 0.0015,
|
3183 |
+
"step": 529
|
3184 |
+
},
|
3185 |
+
{
|
3186 |
+
"epoch": 8.83,
|
3187 |
+
"learning_rate": 3.3876361577587115e-07,
|
3188 |
+
"loss": 0.0033,
|
3189 |
+
"step": 530
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 8.85,
|
3193 |
+
"learning_rate": 3.2926069867446673e-07,
|
3194 |
+
"loss": 0.0055,
|
3195 |
+
"step": 531
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 8.87,
|
3199 |
+
"learning_rate": 3.1988843219178776e-07,
|
3200 |
+
"loss": 0.0011,
|
3201 |
+
"step": 532
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 8.88,
|
3205 |
+
"learning_rate": 3.106470784902754e-07,
|
3206 |
+
"loss": 0.0036,
|
3207 |
+
"step": 533
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 8.9,
|
3211 |
+
"learning_rate": 3.015368960704584e-07,
|
3212 |
+
"loss": 0.0015,
|
3213 |
+
"step": 534
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 8.92,
|
3217 |
+
"learning_rate": 2.9255813976372227e-07,
|
3218 |
+
"loss": 0.0007,
|
3219 |
+
"step": 535
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 8.93,
|
3223 |
+
"learning_rate": 2.8371106072518194e-07,
|
3224 |
+
"loss": 0.0014,
|
3225 |
+
"step": 536
|
3226 |
+
},
|
3227 |
+
{
|
3228 |
+
"epoch": 8.95,
|
3229 |
+
"learning_rate": 2.7499590642665773e-07,
|
3230 |
+
"loss": 0.0025,
|
3231 |
+
"step": 537
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 8.97,
|
3235 |
+
"learning_rate": 2.664129206497479e-07,
|
3236 |
+
"loss": 0.0042,
|
3237 |
+
"step": 538
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 8.98,
|
3241 |
+
"learning_rate": 2.579623434790174e-07,
|
3242 |
+
"loss": 0.0012,
|
3243 |
+
"step": 539
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 9.0,
|
3247 |
+
"learning_rate": 2.4964441129527337e-07,
|
3248 |
+
"loss": 0.0014,
|
3249 |
+
"step": 540
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 9.02,
|
3253 |
+
"learning_rate": 2.4145935676896106e-07,
|
3254 |
+
"loss": 0.0021,
|
3255 |
+
"step": 541
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 9.03,
|
3259 |
+
"learning_rate": 2.3340740885364922e-07,
|
3260 |
+
"loss": 0.0039,
|
3261 |
+
"step": 542
|
3262 |
+
},
|
3263 |
+
{
|
3264 |
+
"epoch": 9.05,
|
3265 |
+
"learning_rate": 2.2548879277963065e-07,
|
3266 |
+
"loss": 0.0018,
|
3267 |
+
"step": 543
|
3268 |
+
},
|
3269 |
+
{
|
3270 |
+
"epoch": 9.07,
|
3271 |
+
"learning_rate": 2.1770373004762035e-07,
|
3272 |
+
"loss": 0.0026,
|
3273 |
+
"step": 544
|
3274 |
+
},
|
3275 |
+
{
|
3276 |
+
"epoch": 9.08,
|
3277 |
+
"learning_rate": 2.1005243842255552e-07,
|
3278 |
+
"loss": 0.001,
|
3279 |
+
"step": 545
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 9.1,
|
3283 |
+
"learning_rate": 2.0253513192751374e-07,
|
3284 |
+
"loss": 0.0052,
|
3285 |
+
"step": 546
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 9.12,
|
3289 |
+
"learning_rate": 1.9515202083771388e-07,
|
3290 |
+
"loss": 0.0019,
|
3291 |
+
"step": 547
|
3292 |
+
},
|
3293 |
+
{
|
3294 |
+
"epoch": 9.13,
|
3295 |
+
"learning_rate": 1.8790331167464758e-07,
|
3296 |
+
"loss": 0.0067,
|
3297 |
+
"step": 548
|
3298 |
+
},
|
3299 |
+
{
|
3300 |
+
"epoch": 9.15,
|
3301 |
+
"learning_rate": 1.807892072002898e-07,
|
3302 |
+
"loss": 0.0031,
|
3303 |
+
"step": 549
|
3304 |
+
},
|
3305 |
+
{
|
3306 |
+
"epoch": 9.17,
|
3307 |
+
"learning_rate": 1.738099064114368e-07,
|
3308 |
+
"loss": 0.0025,
|
3309 |
+
"step": 550
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 9.18,
|
3313 |
+
"learning_rate": 1.6696560453413446e-07,
|
3314 |
+
"loss": 0.0015,
|
3315 |
+
"step": 551
|
3316 |
+
},
|
3317 |
+
{
|
3318 |
+
"epoch": 9.2,
|
3319 |
+
"learning_rate": 1.6025649301821877e-07,
|
3320 |
+
"loss": 0.0021,
|
3321 |
+
"step": 552
|
3322 |
+
},
|
3323 |
+
{
|
3324 |
+
"epoch": 9.22,
|
3325 |
+
"learning_rate": 1.5368275953196177e-07,
|
3326 |
+
"loss": 0.0019,
|
3327 |
+
"step": 553
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 9.23,
|
3331 |
+
"learning_rate": 1.4724458795681962e-07,
|
3332 |
+
"loss": 0.0007,
|
3333 |
+
"step": 554
|
3334 |
+
},
|
3335 |
+
{
|
3336 |
+
"epoch": 9.25,
|
3337 |
+
"learning_rate": 1.4094215838229176e-07,
|
3338 |
+
"loss": 0.0033,
|
3339 |
+
"step": 555
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 9.27,
|
3343 |
+
"learning_rate": 1.3477564710088097e-07,
|
3344 |
+
"loss": 0.0027,
|
3345 |
+
"step": 556
|
3346 |
+
},
|
3347 |
+
{
|
3348 |
+
"epoch": 9.28,
|
3349 |
+
"learning_rate": 1.2874522660316412e-07,
|
3350 |
+
"loss": 0.0018,
|
3351 |
+
"step": 557
|
3352 |
+
},
|
3353 |
+
{
|
3354 |
+
"epoch": 9.3,
|
3355 |
+
"learning_rate": 1.2285106557296479e-07,
|
3356 |
+
"loss": 0.0016,
|
3357 |
+
"step": 558
|
3358 |
+
},
|
3359 |
+
{
|
3360 |
+
"epoch": 9.32,
|
3361 |
+
"learning_rate": 1.1709332888263869e-07,
|
3362 |
+
"loss": 0.0033,
|
3363 |
+
"step": 559
|
3364 |
+
},
|
3365 |
+
{
|
3366 |
+
"epoch": 9.33,
|
3367 |
+
"learning_rate": 1.1147217758845752e-07,
|
3368 |
+
"loss": 0.0014,
|
3369 |
+
"step": 560
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 9.35,
|
3373 |
+
"learning_rate": 1.0598776892610685e-07,
|
3374 |
+
"loss": 0.0022,
|
3375 |
+
"step": 561
|
3376 |
+
},
|
3377 |
+
{
|
3378 |
+
"epoch": 9.37,
|
3379 |
+
"learning_rate": 1.0064025630628583e-07,
|
3380 |
+
"loss": 0.0026,
|
3381 |
+
"step": 562
|
3382 |
+
},
|
3383 |
+
{
|
3384 |
+
"epoch": 9.38,
|
3385 |
+
"learning_rate": 9.542978931041835e-08,
|
3386 |
+
"loss": 0.0022,
|
3387 |
+
"step": 563
|
3388 |
+
},
|
3389 |
+
{
|
3390 |
+
"epoch": 9.4,
|
3391 |
+
"learning_rate": 9.035651368646647e-08,
|
3392 |
+
"loss": 0.0014,
|
3393 |
+
"step": 564
|
3394 |
+
},
|
3395 |
+
{
|
3396 |
+
"epoch": 9.42,
|
3397 |
+
"learning_rate": 8.542057134485638e-08,
|
3398 |
+
"loss": 0.0006,
|
3399 |
+
"step": 565
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 9.43,
|
3403 |
+
"learning_rate": 8.06221003545038e-08,
|
3404 |
+
"loss": 0.0028,
|
3405 |
+
"step": 566
|
3406 |
+
},
|
3407 |
+
{
|
3408 |
+
"epoch": 9.45,
|
3409 |
+
"learning_rate": 7.59612349389599e-08,
|
3410 |
+
"loss": 0.0019,
|
3411 |
+
"step": 567
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 9.47,
|
3415 |
+
"learning_rate": 7.143810547264762e-08,
|
3416 |
+
"loss": 0.0008,
|
3417 |
+
"step": 568
|
3418 |
+
},
|
3419 |
+
{
|
3420 |
+
"epoch": 9.48,
|
3421 |
+
"learning_rate": 6.705283847722288e-08,
|
3422 |
+
"loss": 0.0031,
|
3423 |
+
"step": 569
|
3424 |
+
},
|
3425 |
+
{
|
3426 |
+
"epoch": 9.5,
|
3427 |
+
"learning_rate": 6.280555661802857e-08,
|
3428 |
+
"loss": 0.0052,
|
3429 |
+
"step": 570
|
3430 |
+
},
|
3431 |
+
{
|
3432 |
+
"epoch": 9.52,
|
3433 |
+
"learning_rate": 5.869637870067002e-08,
|
3434 |
+
"loss": 0.0024,
|
3435 |
+
"step": 571
|
3436 |
+
},
|
3437 |
+
{
|
3438 |
+
"epoch": 9.53,
|
3439 |
+
"learning_rate": 5.472541966768552e-08,
|
3440 |
+
"loss": 0.0023,
|
3441 |
+
"step": 572
|
3442 |
+
},
|
3443 |
+
{
|
3444 |
+
"epoch": 9.55,
|
3445 |
+
"learning_rate": 5.089279059533658e-08,
|
3446 |
+
"loss": 0.0031,
|
3447 |
+
"step": 573
|
3448 |
+
},
|
3449 |
+
{
|
3450 |
+
"epoch": 9.57,
|
3451 |
+
"learning_rate": 4.719859869049659e-08,
|
3452 |
+
"loss": 0.0046,
|
3453 |
+
"step": 574
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 9.58,
|
3457 |
+
"learning_rate": 4.3642947287654284e-08,
|
3458 |
+
"loss": 0.0019,
|
3459 |
+
"step": 575
|
3460 |
+
},
|
3461 |
+
{
|
3462 |
+
"epoch": 9.6,
|
3463 |
+
"learning_rate": 4.02259358460233e-08,
|
3464 |
+
"loss": 0.001,
|
3465 |
+
"step": 576
|
3466 |
+
},
|
3467 |
+
{
|
3468 |
+
"epoch": 9.62,
|
3469 |
+
"learning_rate": 3.694765994675886e-08,
|
3470 |
+
"loss": 0.0022,
|
3471 |
+
"step": 577
|
3472 |
+
},
|
3473 |
+
{
|
3474 |
+
"epoch": 9.63,
|
3475 |
+
"learning_rate": 3.3808211290284886e-08,
|
3476 |
+
"loss": 0.0043,
|
3477 |
+
"step": 578
|
3478 |
+
},
|
3479 |
+
{
|
3480 |
+
"epoch": 9.65,
|
3481 |
+
"learning_rate": 3.080767769372939e-08,
|
3482 |
+
"loss": 0.0023,
|
3483 |
+
"step": 579
|
3484 |
+
},
|
3485 |
+
{
|
3486 |
+
"epoch": 9.67,
|
3487 |
+
"learning_rate": 2.7946143088466437e-08,
|
3488 |
+
"loss": 0.0062,
|
3489 |
+
"step": 580
|
3490 |
+
},
|
3491 |
+
{
|
3492 |
+
"epoch": 9.68,
|
3493 |
+
"learning_rate": 2.5223687517770823e-08,
|
3494 |
+
"loss": 0.0013,
|
3495 |
+
"step": 581
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 9.7,
|
3499 |
+
"learning_rate": 2.264038713457706e-08,
|
3500 |
+
"loss": 0.0124,
|
3501 |
+
"step": 582
|
3502 |
+
},
|
3503 |
+
{
|
3504 |
+
"epoch": 9.72,
|
3505 |
+
"learning_rate": 2.0196314199349977e-08,
|
3506 |
+
"loss": 0.0076,
|
3507 |
+
"step": 583
|
3508 |
+
},
|
3509 |
+
{
|
3510 |
+
"epoch": 9.73,
|
3511 |
+
"learning_rate": 1.789153707806357e-08,
|
3512 |
+
"loss": 0.0029,
|
3513 |
+
"step": 584
|
3514 |
+
},
|
3515 |
+
{
|
3516 |
+
"epoch": 9.75,
|
3517 |
+
"learning_rate": 1.5726120240288632e-08,
|
3518 |
+
"loss": 0.0023,
|
3519 |
+
"step": 585
|
3520 |
+
},
|
3521 |
+
{
|
3522 |
+
"epoch": 9.77,
|
3523 |
+
"learning_rate": 1.3700124257388092e-08,
|
3524 |
+
"loss": 0.0011,
|
3525 |
+
"step": 586
|
3526 |
+
},
|
3527 |
+
{
|
3528 |
+
"epoch": 9.78,
|
3529 |
+
"learning_rate": 1.1813605800825578e-08,
|
3530 |
+
"loss": 0.003,
|
3531 |
+
"step": 587
|
3532 |
+
},
|
3533 |
+
{
|
3534 |
+
"epoch": 9.8,
|
3535 |
+
"learning_rate": 1.006661764057837e-08,
|
3536 |
+
"loss": 0.0048,
|
3537 |
+
"step": 588
|
3538 |
+
},
|
3539 |
+
{
|
3540 |
+
"epoch": 9.82,
|
3541 |
+
"learning_rate": 8.459208643659122e-09,
|
3542 |
+
"loss": 0.0019,
|
3543 |
+
"step": 589
|
3544 |
+
},
|
3545 |
+
{
|
3546 |
+
"epoch": 9.83,
|
3547 |
+
"learning_rate": 6.991423772753636e-09,
|
3548 |
+
"loss": 0.0013,
|
3549 |
+
"step": 590
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 9.85,
|
3553 |
+
"learning_rate": 5.6633040849601865e-09,
|
3554 |
+
"loss": 0.002,
|
3555 |
+
"step": 591
|
3556 |
+
},
|
3557 |
+
{
|
3558 |
+
"epoch": 9.87,
|
3559 |
+
"learning_rate": 4.474886730641004e-09,
|
3560 |
+
"loss": 0.0048,
|
3561 |
+
"step": 592
|
3562 |
+
},
|
3563 |
+
{
|
3564 |
+
"epoch": 9.88,
|
3565 |
+
"learning_rate": 3.4262049523847707e-09,
|
3566 |
+
"loss": 0.0015,
|
3567 |
+
"step": 593
|
3568 |
+
},
|
3569 |
+
{
|
3570 |
+
"epoch": 9.9,
|
3571 |
+
"learning_rate": 2.5172880840745873e-09,
|
3572 |
+
"loss": 0.014,
|
3573 |
+
"step": 594
|
3574 |
+
},
|
3575 |
+
{
|
3576 |
+
"epoch": 9.92,
|
3577 |
+
"learning_rate": 1.7481615500691829e-09,
|
3578 |
+
"loss": 0.0058,
|
3579 |
+
"step": 595
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 9.93,
|
3583 |
+
"learning_rate": 1.118846864490708e-09,
|
3584 |
+
"loss": 0.0012,
|
3585 |
+
"step": 596
|
3586 |
+
},
|
3587 |
+
{
|
3588 |
+
"epoch": 9.95,
|
3589 |
+
"learning_rate": 6.293616306246586e-10,
|
3590 |
+
"loss": 0.0031,
|
3591 |
+
"step": 597
|
3592 |
+
},
|
3593 |
+
{
|
3594 |
+
"epoch": 9.97,
|
3595 |
+
"learning_rate": 2.797195404247166e-10,
|
3596 |
+
"loss": 0.0031,
|
3597 |
+
"step": 598
|
3598 |
+
},
|
3599 |
+
{
|
3600 |
+
"epoch": 9.98,
|
3601 |
+
"learning_rate": 6.993037413194348e-11,
|
3602 |
+
"loss": 0.0009,
|
3603 |
+
"step": 599
|
3604 |
+
},
|
3605 |
+
{
|
3606 |
+
"epoch": 10.0,
|
3607 |
+
"learning_rate": 0.0,
|
3608 |
+
"loss": 0.0016,
|
3609 |
+
"step": 600
|
3610 |
+
},
|
3611 |
+
{
|
3612 |
+
"epoch": 10.0,
|
3613 |
+
"step": 600,
|
3614 |
+
"total_flos": 3.37187743727616e+16,
|
3615 |
+
"train_loss": 0.051574386974486214,
|
3616 |
+
"train_runtime": 1007.7691,
|
3617 |
+
"train_samples_per_second": 1.191,
|
3618 |
+
"train_steps_per_second": 0.595
|
3619 |
+
}
|
3620 |
+
],
|
3621 |
+
"logging_steps": 1.0,
|
3622 |
+
"max_steps": 600,
|
3623 |
+
"num_input_tokens_seen": 0,
|
3624 |
+
"num_train_epochs": 10,
|
3625 |
+
"save_steps": 1000,
|
3626 |
+
"total_flos": 3.37187743727616e+16,
|
3627 |
+
"train_batch_size": 1,
|
3628 |
+
"trial_name": null,
|
3629 |
+
"trial_params": null
|
3630 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e732eb00beed04591f31644de882a12cc289c18475cc0879a46b18e03481ff36
|
3 |
+
size 4728
|