--- library_name: transformers language: - th license: apache-2.0 base_model: openai/whisper-medium tags: - asr - speech-recognition - thai - custom-model - fine-tuning - Common Voice - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium TH - Common Voice 17 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0 type: common_voice_17_0 config: th split: validation[:20%] args: th metrics: - name: Wer type: wer value: 81.60690571049138 --- # Whisper Medium TH - Common Voice 17 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2987 - Wer: 81.6069 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 125 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5323 | 0.6083 | 250 | 0.4352 | 91.2683 | | 0.2568 | 1.2165 | 500 | 0.3432 | 87.1514 | | 0.2126 | 1.8248 | 750 | 0.3047 | 83.3333 | | 0.0974 | 2.4331 | 1000 | 0.2987 | 81.6069 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3