noodlynoodle
commited on
Commit
·
939e9e9
1
Parent(s):
4d8486e
Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +1 -1
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1429.90 +/- 212.99
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 129260
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f422edc058861c30dca8c2285d725aec104d03d7e34647ced034f8028e8c20df
|
3 |
size 129260
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -64,7 +64,7 @@
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
-
"start_time":
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
@@ -73,7 +73,7 @@
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -81,7 +81,7 @@
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
-
":serialized:": "
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
@@ -89,7 +89,7 @@
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7feb2ee77790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feb2ee77820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feb2ee778b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feb2ee77940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7feb2ee779d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7feb2ee77a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7feb2ee77af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feb2ee77b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7feb2ee77c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feb2ee77ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feb2ee77d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7feb2ee77dc0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7feb2ee74270>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
64 |
"_num_timesteps_at_start": 0,
|
65 |
"seed": null,
|
66 |
"action_noise": null,
|
67 |
+
"start_time": 1676610899679806348,
|
68 |
"learning_rate": 0.00096,
|
69 |
"tensorboard_log": null,
|
70 |
"lr_schedule": {
|
|
|
73 |
},
|
74 |
"_last_obs": {
|
75 |
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPJujD6mnTG/7jOsPsJktD+2mpa8eey7PvfKJT+hfJG/i2WWPwCrqr2DSZo/t9CYPmMMbL80AUvAxgBHvlf9/r+wjF0+k3aVv9JnSz+j3zI/eXZ6v8iJEz3B/2+/xPALPkMhRT+cJNM+3M8EP8CShb8ZFYk/v+ylv8qnxr5TS5g/i5LLvwazcL9pmV++TenWvx4Slj8JQq09PYYRQEeGlz4euoS/u394wLH+Fj4Z8Wq/I/3Nv7Fh8791tG0/y6cEQLMIer8/Iog8Fb5sv2yyWb5DIUU/nCTTPtzPBD/AkoW/io4HPgHxHb8V88g+oZIHQMFisD9yqrQ/UFREP9kfyLzR2ew9ib3RvlgoVb8y0WA+pqEKv7+m3T9hCSa/E9tsvoYx6T5F2dc/apNtP4Z0t76BPzq/9pstv45zpL3p3ey8szmmv5wk0z6Lufa/j1F1PxZ3gj22sk09OokkP94OuT+Hf4q/90pFv5N31D8krHI8a7RaPzN3uL4OusI/lmBDPYNrtL/T1KM+Xi7bv4xL+7+uVEq+/xcXvyRfZT99yKS95G56v+zFKb8F3Wq/NXMPPkMhRT+CMRvA3M8EP8CShb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
},
|
78 |
"_last_episode_starts": {
|
79 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
81 |
},
|
82 |
"_last_original_obs": {
|
83 |
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABrBTi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA82hfPQAAAACqCe+/AAAAAPvp5L0AAAAA6NfpPwAAAABysXg9AAAAAAu3AEAAAAAATkJjPAAAAAAkIvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lEiMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNkIjz0AAAAAG3fivwAAAAA2v749AAAAAJDs4D8AAAAAc/UYvQAAAABPwfo/AAAAADm8NrwAAAAA1hnnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN7ZjLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALcOO8AAAAAMek578AAAAAj/AmvQAAAAAU2Nk/AAAAAD6DnL0AAAAAusDuPwAAAACy+rQ9AAAAAN6I+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnBTI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAX6aSvAAAAACjl+2/AAAAAO+P9z0AAAAANtHtPwAAAAAMGdW7AAAAAKaE8z8AAAAAPvWuPAAAAADZqtq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
},
|
86 |
"_episode_num": 0,
|
87 |
"use_sde": true,
|
|
|
89 |
"_current_progress_remaining": 0.0,
|
90 |
"ep_info_buffer": {
|
91 |
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGOp59mYjWMAWyUTegDjAF0lEdAqepQWi1zAHV9lChoBkdAkLxRLwnYx2gHTegDaAhHQKnsY3jMmnh1fZQoaAZHQJhr0iD/VAloB03oA2gIR0Cp7utPP9k0dX2UKGgGR0CWaDqiXY16aAdN6ANoCEdAqe+sf5k9U3V9lChoBkdAk1tKyWzF/GgHTegDaAhHQKn3J7sOXmh1fZQoaAZHQJIkjXumaYxoB03oA2gIR0Cp+mmrsByTdX2UKGgGR0CSP2WmP5pKaAdN6ANoCEdAqf5q4MF2V3V9lChoBkdAkw2UHIIWxmgHTegDaAhHQKn/MA8Swnp1fZQoaAZHQJb4AmNR3vBoB03oA2gIR0CqBaKFqSHNdX2UKGgGR0CQdKhBZ6ldaAdN6ANoCEdAqgfJgw482nV9lChoBkdAkKa3WjGkvmgHTegDaAhHQKoKXg4Otnx1fZQoaAZHQJaf+5wwTM9oB03oA2gIR0CqCyyde6ZqdX2UKGgGR0CXd227FsHjaAdN6ANoCEdAqhGo7tAs1HV9lChoBkdAlxhZsKsuF2gHTegDaAhHQKoUXJUYKpl1fZQoaAZHQJbU8Cgbp/xoB03oA2gIR0CqGCWHtWuHdX2UKGgGR0CVxCi/O+qSaAdN6ANoCEdAqhlSTnq3VnV9lChoBkdAmbbH5aePJmgHTegDaAhHQKohK+49X911fZQoaAZHQJh6lmL9/BpoB03oA2gIR0CqI1+VTrE+dX2UKGgGR0CTtzDM/yG0aAdN6ANoCEdAqiXko0ALiXV9lChoBkdAl620hmoR7WgHTegDaAhHQKompmknCwd1fZQoaAZHQJgWBjCpFThoB03oA2gIR0CqLR7lzU7TdX2UKGgGR0CJf70J4SpSaAdN6ANoCEdAqi88fJV81HV9lChoBkdAgcSXhGYrrmgHTegDaAhHQKoyTJ04iot1fZQoaAZHQIvWKXQdCE9oB03oA2gIR0CqM2l8gIQfdX2UKGgGR0CR8MB6KLsKaAdN6ANoCEdAqjzKwB5ooXV9lChoBkdAeqFuKoAGS2gHTegDaAhHQKo+7o8p1A91fZQoaAZHQHbKjdtVJcxoB03oA2gIR0CqQYSAxzq9dX2UKGgGR0CJyoXSBshxaAdN6ANoCEdAqkJI3zcynHV9lChoBkdAj5A021lXimgHTegDaAhHQKpI1Pva11J1fZQoaAZHQIQyMXHim2toB03oA2gIR0CqSvYKpkwwdX2UKGgGR0CVwwZkTYdyaAdN6ANoCEdAqk2SfYjB23V9lChoBkdAjchPDYRNAWgHTegDaAhHQKpOVFl05lx1fZQoaAZHQJQdxsUIsy1oB03oA2gIR0CqV3fcFhXsdX2UKGgGR0CQWkU+cH4XaAdN6ANoCEdAqlphfICEH3V9lChoBkdAkq/s3dbgTGgHTegDaAhHQKpc6x6fJ3h1fZQoaAZHQJGxkOSW7e5oB03oA2gIR0CqXbHzQNTcdX2UKGgGR0B6ZbCJoCdSaAdN6ANoCEdAqmRVBppN9HV9lChoBkdAeg0VWCEpRWgHTegDaAhHQKpmey0KJEZ1fZQoaAZHQJJKV/axoqVoB03oA2gIR0CqaRToUzsQdX2UKGgGR0CCKZzWf9P2aAdN6ANoCEdAqmnSSNfgJnV9lChoBkdAkVstpAUtZmgHTegDaAhHQKpxdc580DV1fZQoaAZHQJP9ZjJ+2E1oB03oA2gIR0CqdL2Nm16WdX2UKGgGR0CUSY5rP+n7aAdN6ANoCEdAqniMcbR4QnV9lChoBkdAlOYgUcn3L2gHTegDaAhHQKp5VEtNBWx1fZQoaAZHQJSLfzK9wm5oB03oA2gIR0Cqf9mB4D9wdX2UKGgGR0CV/szV+Zw5aAdN6ANoCEdAqoH2kgwGnnV9lChoBkdAlfuUkSmIkGgHTegDaAhHQKqEjTxXnyN1fZQoaAZHQJSQyZlWfbtoB03oA2gIR0CqhVPeP7vYdX2UKGgGR0CVaq4ubqhUaAdN6ANoCEdAqovhR0lqrXV9lChoBkdAk+H/69CeE2gHTegDaAhHQKqO1xSYPXl1fZQoaAZHQJWkchOgxrVoB03oA2gIR0Cqks6SDAaedX2UKGgGR0CM2m7A+IM0aAdN6ANoCEdAqpQClLvkR3V9lChoBkdAmJsgtvn8sWgHTegDaAhHQKqbmDwpe/p1fZQoaAZHQJdkOtnwob5oB03oA2gIR0CqndNHhCMQdX2UKGgGR0CG2+V32VVxaAdN6ANoCEdAqqBhwsGxEHV9lChoBkdAlWk3w5NoJ2gHTegDaAhHQKqhJizcAR11fZQoaAZHQJoioQrc0tRoB03oA2gIR0Cqp46r/82rdX2UKGgGR0CWFRVrRBu5aAdN6ANoCEdAqqmtxMnJDHV9lChoBkdAldgpGe+VT2gHTegDaAhHQKqtKEgW8Ad1fZQoaAZHQIqIURxtHhFoB03oA2gIR0CqrkuO0b97dX2UKGgGR0CWkw+g13t8aAdN6ANoCEdAqrc3r0J4S3V9lChoBkdAlE4zQiRnvmgHTegDaAhHQKq5WRODaoN1fZQoaAZHQJdu/6rNnoRoB03oA2gIR0Cqu9dBBzFNdX2UKGgGR0CYka0g8r7PaAdN6ANoCEdAqrybYEnss3V9lChoBkdAlJBXgDRtxmgHTegDaAhHQKrC/UHY6GR1fZQoaAZHQJbEZJGvwE1oB03oA2gIR0CqxRCgTRICdX2UKGgGR0CZ+uFuNxVAaAdN6ANoCEdAqseaIN3GGXV9lChoBkdAmbcQSWZ7X2gHTegDaAhHQKrIVdQfp2V1fZQoaAZHQJGRQZVGTcJoB03oA2gIR0Cq0ZOOsDGMdX2UKGgGR0CXZIUYKpkxaAdN6ANoCEdAqtRJUBGQS3V9lChoBkdAlR3LHEMspWgHTegDaAhHQKrW2pAlfJF1fZQoaAZHQHxPFSn+AEtoB03oA2gIR0Cq15NqHoHLdX2UKGgGR0CVFDqrBCUpaAdN6ANoCEdAqt5mPtD2J3V9lChoBkdAkeLQudwvQGgHTegDaAhHQKrgdroGIKt1fZQoaAZHQIyBQYekpJBoB03oA2gIR0Cq4v+HJtBOdX2UKGgGR0CTQ3BwdbPhaAdN6ANoCEdAquPDxqfvnnV9lChoBkdAmII5PykKu2gHTegDaAhHQKrrcNTcZcd1fZQoaAZHQJP3EwtapxZoB03oA2gIR0Cq7rfCZWq+dX2UKGgGR0CMf931zySWaAdN6ANoCEdAqvJCA6Mir3V9lChoBkdAkvtY6XBxgmgHTegDaAhHQKrzCVQAMlV1fZQoaAZHQIntoq3EycloB03oA2gIR0Cq+YqgAZKndX2UKGgGR0CUjwiGFi8WaAdN6ANoCEdAqvvhmZmZmnV9lChoBkdAkdGR6a9bo2gHTegDaAhHQKr+YfHxSYR1fZQoaAZHQJcioUAT7EZoB03oA2gIR0Cq/zD5bhWHdX2UKGgGR0CWgO72+PBBaAdN6ANoCEdAqwYBOvdM03V9lChoBkdAlIGezposZ2gHTegDaAhHQKsJKtYB/7V1fZQoaAZHQJM22XzDn/1oB03oA2gIR0CrDRE2Hck/dX2UKGgGR0CZGvYr8R+SaAdN6ANoCEdAqw4zUCq6v3V9lChoBkdAmSHEUsWfsmgHTegDaAhHQKsVR3fQ8fV1fZQoaAZHQJdiqaiKziVoB03oA2gIR0CrF230Gu9wdX2UKGgGR0CRLLGwzLwGaAdN6ANoCEdAqxoP9rGipXV9lChoBkdAmNm3h86V+2gHTegDaAhHQKsaygxrSE11fZQoaAZHQJhoUwsXizdoB03oA2gIR0CrIWbJnxrjdX2UKGgGR0CZgcpLEk0KaAdN6ANoCEdAqyPE/UvwmXV9lChoBkdAmd07ZFocrGgHTegDaAhHQKsn1uwX6691fZQoaAZHQHlmifUWl/JoB03oA2gIR0CrKQmEPDpDdX2UKGgGR0CTuKlDF6zFaAdN6ANoCEdAqzSt+PRzBHV9lChoBkdAkGM+w1R+B2gHTegDaAhHQKs3vOoo/iZ1fZQoaAZHQIpyJnanJkpoB03oA2gIR0CrOmKmsNlRdX2UKGgGR0CWxbyuZCv6aAdN6ANoCEdAqzsoUeuFH3VlLg=="
|
93 |
},
|
94 |
"ep_success_buffer": {
|
95 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53b82c31e47c1328240b9780bb16014db08e8a2a64bdd220e7c01c3713f5e524
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a1c60788fc4de3a667463e94b9e59e32327aed05b3d6ae9fff3fcb239a3132b
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1eb79791f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1eb7979280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1eb7979310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1eb79793a0>", "_build": "<function ActorCriticPolicy._build at 0x7f1eb7979430>", "forward": "<function ActorCriticPolicy.forward at 0x7f1eb79794c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1eb7979550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1eb79795e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1eb7979670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1eb7979700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1eb7979790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1eb7979820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1eb7971840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675316379366652453, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMk6ZD4Df/A/r7sGPzwy9z/TYhlAiXkXvnXmoD3MHhA/vVGTPtYtML9n/Du/3J0YPyJOfz8Xanc/Tv8Jv5Xotz9PvoG/CBfmP0it+z6czMZAZSpsv+f/s78XrKE9B1DTugg0AsDpPNI+4Kv4v/uUQD8DaKi/XptYv3QN2Tvul4u+BpInv3mhCT/umRA/g5/aPrmaw79eaU8+Fro+v/rVsj7rMbO+mFO0PrptxD5caDu+0kK0v2SYhbwZm1E/iPg8PrsohD+HmSI9p/B+vxoUKL0Fq/s+6TzSPrXFAz/7lEA/dSAYv0MWib6eRwE/oKW8vnZ7DMD2d4w/+Jgfv3VNLz+mVd6/2RQTPpjrRb8hnRU9FM2cv3b9Kr+E4yQ/bGiePMaS9jwvdIW/Z66RvmqpAL8hgXG+Cm+xPoDPfr/xCDS8Bav7Puk80j61xQM/oyaqv1/GAj9V53y/QctKvltKGD8Xscq/8g9OvRKsFj6nZxTAwYm2v2A/zj8p7Ak/x3FUQL01o7/iYzm/MuwjP+jT4Tw6Kq0/kVqrvtIjPz6HY1+/6rPhvnhVb0BFPd4/4woUvwg0AsDpPNI+tcUDP6Mmqr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACk0Pi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAx/VvQAAAAB4m/6/AAAAAAqzVb0AAAAA5+LiPwAAAADNUiO9AAAAABpQ8D8AAAAAPzi/PQAAAAD5Ht2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbB05NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDzDM7wAAAAAx8/avwAAAAAD2to9AAAAAI628j8AAAAAIZYgvQAAAABFFe8/AAAAACNMEb0AAAAAmjjmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIoqiLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAdcQI+AAAAAC6L278AAAAA4gNhugAAAACwsdw/AAAAAChUNT0AAAAA8CsAQAAAAAASQsA9AAAAACug778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByF9s0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFYOuPQAAAAAZrfe/AAAAAH6vMb0AAAAAPFvgPwAAAAASAmE9AAAAAAYmAUAAAAAAfOvBvQAAAACSydq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIBgJYFJQLyMAWyUTegDjAF0lEdAqCuHluFYdXV9lChoBkdAfmhEyckMTmgHTegDaAhHQKgwmfzSThZ1fZQoaAZHQHwZFRHf/FRoB03oA2gIR0CoNJOzposadX2UKGgGR0CAagzl90A+aAdN6ANoCEdAqDYdKVY6n3V9lChoBkdAgtPe4kNWl2gHTegDaAhHQKg4kAsCkoF1fZQoaAZHQIIe4o/iYLNoB03oA2gIR0CoPZAv114gdX2UKGgGR0CDJtZaFEiMaAdN6ANoCEdAqEF3H5rP+nV9lChoBkdAewtDE3sHB2gHTegDaAhHQKhDAS8J2Md1fZQoaAZHQIV3sV32VVxoB03oA2gIR0CoRW8BdUsGdX2UKGgGR0B/LJuejEehaAdN6ANoCEdAqEpVotcv/XV9lChoBkdAew01OCXhO2gHTegDaAhHQKhOMnCwbER1fZQoaAZHQHyj0jC53C9oB03oA2gIR0CoT6gBLf1pdX2UKGgGR0B1G0K+i8FqaAdN6ANoCEdAqFIJLGrCFnV9lChoBkdAexBDG96C2GgHTegDaAhHQKhW/kSVW0Z1fZQoaAZHQHLB4wVTJhhoB03oA2gIR0CoWuW6bvw3dX2UKGgGR0B+HZwl0HQhaAdN6ANoCEdAqFx3kkrwv3V9lChoBkdAfZH19ORDC2gHTegDaAhHQKhe7Iz3yqd1fZQoaAZHQHk8g+IMz/JoB03oA2gIR0CoY/n5rP+odX2UKGgGR0B2n6/oJRfnaAdN6ANoCEdAqGe7qKP4mHV9lChoBkdAfXYinYQJ5WgHTegDaAhHQKhpSrCFbml1fZQoaAZHQHz354fOlftoB03oA2gIR0Coa72gvlEJdX2UKGgGR0B2AaGKyfL+aAdN6ANoCEdAqHC/HaN+9nV9lChoBkdAf6XS3LFGX2gHTegDaAhHQKh0l003wTd1fZQoaAZHQH5v+32EkB1oB03oA2gIR0CodieKTB69dX2UKGgGR0B5bPdj5KvnaAdN6ANoCEdAqHiXHPu5SXV9lChoBkdAdxgLIPsiS2gHTegDaAhHQKh9jovi97F1fZQoaAZHQIHT5FgDzRRoB03oA2gIR0CogWlhG6PKdX2UKGgGR0BzhoO6NEPUaAdN6ANoCEdAqILqIxgy/XV9lChoBkdAgjtap5u63GgHTegDaAhHQKiFU2GZeAx1fZQoaAZHQGw/b5uZThpoB00ZAWgIR0CohmnWrfcfdX2UKGgGR0B7qJfQa72+aAdN6ANoCEdAqIouECeVcHV9lChoBkdAfc7tpVS4v2gHTegDaAhHQKiN+EoOQQt1fZQoaAZHQITSrn3cpLFoB03oA2gIR0Coke51eSjhdX2UKGgGR0B/IdmZmZmaaAdN6ANoCEdAqJMeeWfK6nV9lChoBkdAfVKQ2/BWP2gHTegDaAhHQKiW6g/1QIl1fZQoaAZHQH3r+5SWJJpoB03oA2gIR0ComsFPacqfdX2UKGgGR0CBI1S1maphaAdN6ANoCEdAqJ7IYixFAnV9lChoBkdAfHBdZq20A2gHTegDaAhHQKif8ZNwiq11fZQoaAZHQHrJ1P8AJcBoB03oA2gIR0Coo6f779AHdX2UKGgGR0B7WM88s+V1aAdN6ANoCEdAqKeOQ4jrzHV9lChoBkdAfd5T1CgK4WgHTegDaAhHQKirqXWvr4Z1fZQoaAZHQIANrjrAxi5oB03oA2gIR0CorNitaIN3dX2UKGgGR0B6UMh7mdRSaAdN6ANoCEdAqLCj876pHnV9lChoBkdAg2geNLlFMWgHTegDaAhHQKi0m/xlQMx1fZQoaAZHQIPbrWK/EfloB03oA2gIR0CouIU1Q66rdX2UKGgGR0B8484uK4x2aAdN6ANoCEdAqLmmNT987nV9lChoBkdAe+hKh+OOsGgHTegDaAhHQKi9ayYXwb51fZQoaAZHQIGUrk8zQ/poB03oA2gIR0CowUOZb6gvdX2UKGgGR0CBtJ1YhdMTaAdN6ANoCEdAqMUmFnIyTXV9lChoBkdAffrPJ7sv7GgHTegDaAhHQKjGVxbSqlx1fZQoaAZHQHzjtjoZAIJoB03oA2gIR0Coyi7PIGQkdX2UKGgGR0B+EkC8vmHQaAdN6ANoCEdAqM4XSF49o3V9lChoBkdAg6gwVsUIs2gHTegDaAhHQKjR/TkQwsZ1fZQoaAZHQIGfzjm0VrRoB03oA2gIR0Co0yNTcZccdX2UKGgGR0CEeujGkvboaAdN6ANoCEdAqNb67sfJWHV9lChoBkdAf1hlpGnXNGgHTegDaAhHQKja4oCMglp1fZQoaAZHQIQejImw7kpoB03oA2gIR0Co3snim2srdX2UKGgGR0CEqAwBYFJQaAdN6ANoCEdAqN/vsNUfgnV9lChoBkdAgOnx2r4nGGgHTegDaAhHQKjjoqCHymR1fZQoaAZHQHwF4vWYnfFoB03oA2gIR0Co52YV6/qPdX2UKGgGR0CAsU+hXbM5aAdN6ANoCEdAqOtAnpjc23V9lChoBkdAhYLundfsu2gHTegDaAhHQKjsYudwvQF1fZQoaAZHQH7oUI1LrX1oB03oA2gIR0Co8CUWl/H6dX2UKGgGR0CAIajDbah6aAdN6ANoCEdAqPPXvDxb0XV9lChoBkdAiunIv8IiT2gHTegDaAhHQKj3tjHXEqF1fZQoaAZHQIPQJrP+n65oB03oA2gIR0Co+NQZOzppdX2UKGgGR0CDQT6sySFHaAdN6ANoCEdAqPyQjbBXS3V9lChoBkdAhPYaJZW7v2gHTegDaAhHQKkAXULlV951fZQoaAZHQIfJLVhCtzVoB03oA2gIR0CpBGIna37UdX2UKGgGR0CDVvEP1+RYaAdN6ANoCEdAqQWLeIl+mXV9lChoBkdAgL056+nIhmgHTegDaAhHQKkJNkZJkG11fZQoaAZHQIeoBK+SKWNoB03oA2gIR0CpDRIRRMvidX2UKGgGR0CGXGtLcsUZaAdN6ANoCEdAqRD4WvbGm3V9lChoBkdAhqH0+cH4XWgHTegDaAhHQKkSHP7el9B1fZQoaAZHQIQ2M6tDD0loB03oA2gIR0CpFeUNBnjAdX2UKGgGR0CIAD/5tWMkaAdN6ANoCEdAqRm3qVyFPHV9lChoBkdAgJSfGdZq22gHTegDaAhHQKkdlP9kz411fZQoaAZHQIYbYcebNKRoB03oA2gIR0CpHsSiudPMdX2UKGgGR0CEoE/i5uqFaAdN6ANoCEdAqSKjYukDZHV9lChoBkdAh0Lthd+ocmgHTegDaAhHQKkmdnxJ/Xp1fZQoaAZHQIPHNv4ubqhoB03oA2gIR0CpKly5y2hJdX2UKGgGR0CD/jHggow3aAdN6ANoCEdAqSuGDDjzZ3V9lChoBkdAiV6hOYYzi2gHTegDaAhHQKkvP/iHZbp1fZQoaAZHQILOfD50r9VoB03oA2gIR0CpMw+g+QlsdX2UKGgGR0CFu61MM7U5aAdN6ANoCEdAqTcfUBnzx3V9lChoBkdAhRz06YE4emgHTegDaAhHQKk4V4s3AEd1fZQoaAZHQHwkKKHfuTloB03oA2gIR0CpPDfsVtXQdX2UKGgGR0CMfwbn5i3HaAdN6ANoCEdAqT//eN1hcHV9lChoBkdAh2LrZi/fwmgHTegDaAhHQKlEA4ZuQ6p1fZQoaAZHQIjkVsUIsy1oB03oA2gIR0CpRTORT0g9dX2UKGgGR0CKIuLEUCaJaAdN6ANoCEdAqUkHSlWOqHV9lChoBkdAg6x9VWCEpWgHTegDaAhHQKlN+hbGFSN1fZQoaAZHQIjN8+qzZ6FoB03oA2gIR0CpVHr0aqCIdX2UKGgGR0CH647+T/yYaAdN6ANoCEdAqVZL+tKZlXV9lChoBkdAhCz1R1oxpWgHTegDaAhHQKlaKrtE5Qx1fZQoaAZHQILUjXYlIEtoB03oA2gIR0CpXgA+hXbNdX2UKGgGR0CBqRA9FF2FaAdN6ANoCEdAqWH6SFGoaXV9lChoBkdAhmfctf5ULmgHTegDaAhHQKljFHzYmLN1fZQoaAZHQIIjaHdoFmpoB03oA2gIR0CpZtBUzbeudX2UKGgGR0CFNiErXlKcaAdN6ANoCEdAqWqkoUi6hHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feb2ee77790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feb2ee77820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feb2ee778b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feb2ee77940>", "_build": "<function ActorCriticPolicy._build at 0x7feb2ee779d0>", "forward": "<function ActorCriticPolicy.forward at 0x7feb2ee77a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7feb2ee77af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feb2ee77b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7feb2ee77c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feb2ee77ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feb2ee77d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feb2ee77dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feb2ee74270>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676610899679806348, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPJujD6mnTG/7jOsPsJktD+2mpa8eey7PvfKJT+hfJG/i2WWPwCrqr2DSZo/t9CYPmMMbL80AUvAxgBHvlf9/r+wjF0+k3aVv9JnSz+j3zI/eXZ6v8iJEz3B/2+/xPALPkMhRT+cJNM+3M8EP8CShb8ZFYk/v+ylv8qnxr5TS5g/i5LLvwazcL9pmV++TenWvx4Slj8JQq09PYYRQEeGlz4euoS/u394wLH+Fj4Z8Wq/I/3Nv7Fh8791tG0/y6cEQLMIer8/Iog8Fb5sv2yyWb5DIUU/nCTTPtzPBD/AkoW/io4HPgHxHb8V88g+oZIHQMFisD9yqrQ/UFREP9kfyLzR2ew9ib3RvlgoVb8y0WA+pqEKv7+m3T9hCSa/E9tsvoYx6T5F2dc/apNtP4Z0t76BPzq/9pstv45zpL3p3ey8szmmv5wk0z6Lufa/j1F1PxZ3gj22sk09OokkP94OuT+Hf4q/90pFv5N31D8krHI8a7RaPzN3uL4OusI/lmBDPYNrtL/T1KM+Xi7bv4xL+7+uVEq+/xcXvyRfZT99yKS95G56v+zFKb8F3Wq/NXMPPkMhRT+CMRvA3M8EP8CShb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABrBTi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA82hfPQAAAACqCe+/AAAAAPvp5L0AAAAA6NfpPwAAAABysXg9AAAAAAu3AEAAAAAATkJjPAAAAAAkIvq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9lEiMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNkIjz0AAAAAG3fivwAAAAA2v749AAAAAJDs4D8AAAAAc/UYvQAAAABPwfo/AAAAADm8NrwAAAAA1hnnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN7ZjLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALcOO8AAAAAMek578AAAAAj/AmvQAAAAAU2Nk/AAAAAD6DnL0AAAAAusDuPwAAAACy+rQ9AAAAAN6I+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnBTI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAX6aSvAAAAACjl+2/AAAAAO+P9z0AAAAANtHtPwAAAAAMGdW7AAAAAKaE8z8AAAAAPvWuPAAAAADZqtq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGOp59mYjWMAWyUTegDjAF0lEdAqepQWi1zAHV9lChoBkdAkLxRLwnYx2gHTegDaAhHQKnsY3jMmnh1fZQoaAZHQJhr0iD/VAloB03oA2gIR0Cp7utPP9k0dX2UKGgGR0CWaDqiXY16aAdN6ANoCEdAqe+sf5k9U3V9lChoBkdAk1tKyWzF/GgHTegDaAhHQKn3J7sOXmh1fZQoaAZHQJIkjXumaYxoB03oA2gIR0Cp+mmrsByTdX2UKGgGR0CSP2WmP5pKaAdN6ANoCEdAqf5q4MF2V3V9lChoBkdAkw2UHIIWxmgHTegDaAhHQKn/MA8Swnp1fZQoaAZHQJb4AmNR3vBoB03oA2gIR0CqBaKFqSHNdX2UKGgGR0CQdKhBZ6ldaAdN6ANoCEdAqgfJgw482nV9lChoBkdAkKa3WjGkvmgHTegDaAhHQKoKXg4Otnx1fZQoaAZHQJaf+5wwTM9oB03oA2gIR0CqCyyde6ZqdX2UKGgGR0CXd227FsHjaAdN6ANoCEdAqhGo7tAs1HV9lChoBkdAlxhZsKsuF2gHTegDaAhHQKoUXJUYKpl1fZQoaAZHQJbU8Cgbp/xoB03oA2gIR0CqGCWHtWuHdX2UKGgGR0CVxCi/O+qSaAdN6ANoCEdAqhlSTnq3VnV9lChoBkdAmbbH5aePJmgHTegDaAhHQKohK+49X911fZQoaAZHQJh6lmL9/BpoB03oA2gIR0CqI1+VTrE+dX2UKGgGR0CTtzDM/yG0aAdN6ANoCEdAqiXko0ALiXV9lChoBkdAl620hmoR7WgHTegDaAhHQKompmknCwd1fZQoaAZHQJgWBjCpFThoB03oA2gIR0CqLR7lzU7TdX2UKGgGR0CJf70J4SpSaAdN6ANoCEdAqi88fJV81HV9lChoBkdAgcSXhGYrrmgHTegDaAhHQKoyTJ04iot1fZQoaAZHQIvWKXQdCE9oB03oA2gIR0CqM2l8gIQfdX2UKGgGR0CR8MB6KLsKaAdN6ANoCEdAqjzKwB5ooXV9lChoBkdAeqFuKoAGS2gHTegDaAhHQKo+7o8p1A91fZQoaAZHQHbKjdtVJcxoB03oA2gIR0CqQYSAxzq9dX2UKGgGR0CJyoXSBshxaAdN6ANoCEdAqkJI3zcynHV9lChoBkdAj5A021lXimgHTegDaAhHQKpI1Pva11J1fZQoaAZHQIQyMXHim2toB03oA2gIR0CqSvYKpkwwdX2UKGgGR0CVwwZkTYdyaAdN6ANoCEdAqk2SfYjB23V9lChoBkdAjchPDYRNAWgHTegDaAhHQKpOVFl05lx1fZQoaAZHQJQdxsUIsy1oB03oA2gIR0CqV3fcFhXsdX2UKGgGR0CQWkU+cH4XaAdN6ANoCEdAqlphfICEH3V9lChoBkdAkq/s3dbgTGgHTegDaAhHQKpc6x6fJ3h1fZQoaAZHQJGxkOSW7e5oB03oA2gIR0CqXbHzQNTcdX2UKGgGR0B6ZbCJoCdSaAdN6ANoCEdAqmRVBppN9HV9lChoBkdAeg0VWCEpRWgHTegDaAhHQKpmey0KJEZ1fZQoaAZHQJJKV/axoqVoB03oA2gIR0CqaRToUzsQdX2UKGgGR0CCKZzWf9P2aAdN6ANoCEdAqmnSSNfgJnV9lChoBkdAkVstpAUtZmgHTegDaAhHQKpxdc580DV1fZQoaAZHQJP9ZjJ+2E1oB03oA2gIR0CqdL2Nm16WdX2UKGgGR0CUSY5rP+n7aAdN6ANoCEdAqniMcbR4QnV9lChoBkdAlOYgUcn3L2gHTegDaAhHQKp5VEtNBWx1fZQoaAZHQJSLfzK9wm5oB03oA2gIR0Cqf9mB4D9wdX2UKGgGR0CV/szV+Zw5aAdN6ANoCEdAqoH2kgwGnnV9lChoBkdAlfuUkSmIkGgHTegDaAhHQKqEjTxXnyN1fZQoaAZHQJSQyZlWfbtoB03oA2gIR0CqhVPeP7vYdX2UKGgGR0CVaq4ubqhUaAdN6ANoCEdAqovhR0lqrXV9lChoBkdAk+H/69CeE2gHTegDaAhHQKqO1xSYPXl1fZQoaAZHQJWkchOgxrVoB03oA2gIR0Cqks6SDAaedX2UKGgGR0CM2m7A+IM0aAdN6ANoCEdAqpQClLvkR3V9lChoBkdAmJsgtvn8sWgHTegDaAhHQKqbmDwpe/p1fZQoaAZHQJdkOtnwob5oB03oA2gIR0CqndNHhCMQdX2UKGgGR0CG2+V32VVxaAdN6ANoCEdAqqBhwsGxEHV9lChoBkdAlWk3w5NoJ2gHTegDaAhHQKqhJizcAR11fZQoaAZHQJoioQrc0tRoB03oA2gIR0Cqp46r/82rdX2UKGgGR0CWFRVrRBu5aAdN6ANoCEdAqqmtxMnJDHV9lChoBkdAldgpGe+VT2gHTegDaAhHQKqtKEgW8Ad1fZQoaAZHQIqIURxtHhFoB03oA2gIR0CqrkuO0b97dX2UKGgGR0CWkw+g13t8aAdN6ANoCEdAqrc3r0J4S3V9lChoBkdAlE4zQiRnvmgHTegDaAhHQKq5WRODaoN1fZQoaAZHQJdu/6rNnoRoB03oA2gIR0Cqu9dBBzFNdX2UKGgGR0CYka0g8r7PaAdN6ANoCEdAqrybYEnss3V9lChoBkdAlJBXgDRtxmgHTegDaAhHQKrC/UHY6GR1fZQoaAZHQJbEZJGvwE1oB03oA2gIR0CqxRCgTRICdX2UKGgGR0CZ+uFuNxVAaAdN6ANoCEdAqseaIN3GGXV9lChoBkdAmbcQSWZ7X2gHTegDaAhHQKrIVdQfp2V1fZQoaAZHQJGRQZVGTcJoB03oA2gIR0Cq0ZOOsDGMdX2UKGgGR0CXZIUYKpkxaAdN6ANoCEdAqtRJUBGQS3V9lChoBkdAlR3LHEMspWgHTegDaAhHQKrW2pAlfJF1fZQoaAZHQHxPFSn+AEtoB03oA2gIR0Cq15NqHoHLdX2UKGgGR0CVFDqrBCUpaAdN6ANoCEdAqt5mPtD2J3V9lChoBkdAkeLQudwvQGgHTegDaAhHQKrgdroGIKt1fZQoaAZHQIyBQYekpJBoB03oA2gIR0Cq4v+HJtBOdX2UKGgGR0CTQ3BwdbPhaAdN6ANoCEdAquPDxqfvnnV9lChoBkdAmII5PykKu2gHTegDaAhHQKrrcNTcZcd1fZQoaAZHQJP3EwtapxZoB03oA2gIR0Cq7rfCZWq+dX2UKGgGR0CMf931zySWaAdN6ANoCEdAqvJCA6Mir3V9lChoBkdAkvtY6XBxgmgHTegDaAhHQKrzCVQAMlV1fZQoaAZHQIntoq3EycloB03oA2gIR0Cq+YqgAZKndX2UKGgGR0CUjwiGFi8WaAdN6ANoCEdAqvvhmZmZmnV9lChoBkdAkdGR6a9bo2gHTegDaAhHQKr+YfHxSYR1fZQoaAZHQJcioUAT7EZoB03oA2gIR0Cq/zD5bhWHdX2UKGgGR0CWgO72+PBBaAdN6ANoCEdAqwYBOvdM03V9lChoBkdAlIGezposZ2gHTegDaAhHQKsJKtYB/7V1fZQoaAZHQJM22XzDn/1oB03oA2gIR0CrDRE2Hck/dX2UKGgGR0CZGvYr8R+SaAdN6ANoCEdAqw4zUCq6v3V9lChoBkdAmSHEUsWfsmgHTegDaAhHQKsVR3fQ8fV1fZQoaAZHQJdiqaiKziVoB03oA2gIR0CrF230Gu9wdX2UKGgGR0CRLLGwzLwGaAdN6ANoCEdAqxoP9rGipXV9lChoBkdAmNm3h86V+2gHTegDaAhHQKsaygxrSE11fZQoaAZHQJhoUwsXizdoB03oA2gIR0CrIWbJnxrjdX2UKGgGR0CZgcpLEk0KaAdN6ANoCEdAqyPE/UvwmXV9lChoBkdAmd07ZFocrGgHTegDaAhHQKsn1uwX6691fZQoaAZHQHlmifUWl/JoB03oA2gIR0CrKQmEPDpDdX2UKGgGR0CTuKlDF6zFaAdN6ANoCEdAqzSt+PRzBHV9lChoBkdAkGM+w1R+B2gHTegDaAhHQKs3vOoo/iZ1fZQoaAZHQIpyJnanJkpoB03oA2gIR0CrOmKmsNlRdX2UKGgGR0CWxbyuZCv6aAdN6ANoCEdAqzsoUeuFH3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1429.901073309203, "std_reward": 212.99235969768418, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T06:14:15.438496"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2136
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d5c0478854738c2cc377e0601f1282472c5c50e35857d0e6aa3cd3a4f91903d
|
3 |
size 2136
|