File size: 26,065 Bytes
417eb05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
#!/usr/bin/env python
# coding: utf-8
# In[27]:
import pandas as pd
import numpy as np
get_ipython().run_line_magic('matplotlib', 'inline')
import seaborn as sns
sns.set(style="whitegrid")
import os
import glob as gb
import cv2
import tensorflow as tf
import keras
import random
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten ,Dropout ,Input , BatchNormalization ,GlobalAveragePooling2D
from tensorflow.keras.utils import to_categorical
from keras.optimizers import Adam
from PIL import Image
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import classification_report, confusion_matrix , accuracy_score , ConfusionMatrixDisplay
from tensorflow.keras.metrics import Precision , Recall
from keras.metrics import Precision, Recall
import struct
from array import array
from os.path import join
from keras.models import load_model
from skimage.exposure import rescale_intensity
from sklearn.preprocessing import OneHotEncoder
from keras.callbacks import EarlyStopping, ReduceLROnPlateau ,LearningRateScheduler
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from PIL import Image
# In[2]:
from keras.datasets import cifar100
# In[3]:
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
# In[4]:
np.save('x_train.npy', x_train)
np.save('y_train.npy', y_train)
np.save('x_test.npy', x_test)
np.save('y_test.npy', y_test)
# In[5]:
print(f"x_train shape: {x_train.shape}")
print(f"y_train shape: {y_train.shape}")
print(f"x_test shape: {x_test.shape}")
print(f"y_test shape: {y_test.shape}")
# In[6]:
def preprocess_data(x, y):
x = tf.cast(x, tf.float32) / 255.0
return x, y
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data()
y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=100)
y_test_encoded = tf.keras.utils.to_categorical(y_test, num_classes=100)
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train_encoded))
train_dataset = train_dataset.map(preprocess_data)
batch_size = 64
train_dataset = train_dataset.shuffle(buffer_size=10000).batch(batch_size).prefetch(tf.data.AUTOTUNE)
for batch in train_dataset.take(1):
images, labels = batch
print(images.shape, labels.shape)
# In[7]:
y_train_encoded = to_categorical(y_train, num_classes=100)
y_test_encoded = to_categorical(y_test, num_classes=100)
# In[34]:
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import cifar100
import tensorflow as tf
from PIL import Image
import cv2
# تحميل بيانات CIFAR-100
(x_train, _), _ = cifar100.load_data()
# اختيار بعض الصور العشوائية
num_images = 5
random_indices = np.random.choice(len(x_train), num_images)
sample_images = x_train[random_indices]
# تحويل الصور من Tensor إلى NumPy إذا لزم الأمر
sample_images_np = [img if isinstance(img, np.ndarray) else img.numpy() for img in sample_images]
# تحويل الصور إلى نوع uint8
sample_images_np = [img.astype(np.uint8) for img in sample_images_np]
# تحسين دقة الصورة باستخدام PIL
def upscale_image(image, scale_factor):
img = Image.fromarray(image)
new_size = (img.width * scale_factor, img.height * scale_factor)
img_upscaled = img.resize(new_size, Image.BICUBIC) # استخدام تقنية الاستيفاء البعدي
return np.array(img_upscaled)
# تطبيق فلتر حاد على الصورة
def sharpen_image(image):
kernel = np.array([[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]])
sharpened = cv2.filter2D(src=image, ddepth=-1, kernel=kernel)
return sharpened
# عرض الصور الأصلية، المكبرة والمحسنة بالفلتر الحاد
plt.figure(figsize=(20, 10), dpi=100)
for i in range(num_images):
# عرض الصورة الأصلية
plt.subplot(3, num_images, i + 1)
plt.imshow(sample_images_np[i])
plt.title(f"Original Image {i+1}", fontsize=16)
plt.axis('off')
# عرض الصورة المكبرة
img_upscaled = upscale_image(sample_images_np[i], 4)
plt.subplot(3, num_images, num_images + i + 1)
plt.imshow(img_upscaled)
plt.title(f"Upscaled Image {i+1}", fontsize=16)
plt.axis('off')
plt.tight_layout()
plt.show()
# In[37]:
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Dropout, GlobalAveragePooling2D, Dense, Input
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, LearningRateScheduler
# تحويل التسميات إلى تصنيف فئة
y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=100)
y_test_encoded = tf.keras.utils.to_categorical(y_test, num_classes=100)
# إعدادات تعزيز البيانات
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
zoom_range=0.2,
shear_range=0.1,
brightness_range=[0.8, 1.2],
channel_shift_range=0.1,
fill_mode='nearest' # استخدام طريقة الملء للحفاظ على جودة الصور
)
# ملاءمة بيانات التدريب على المعزز
datagen.fit(x_train)
# وظيفة لتقليل معدل التعلم كل 10 حلقات
def scheduler(epoch, lr):
if epoch % 10 == 0 and epoch != 0:
lr = lr / 2
return lr
# إعداد الإيقاف المبكر وخفض معدل التعلم
early_stopping = EarlyStopping(
monitor='val_loss',
patience=10,
restore_best_weights=True,
verbose=1
)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss',
factor=0.5,
patience=5,
min_lr=1e-6,
verbose=1
)
# بناء النموذج المحسن باستخدام Input
model = Sequential([
Input(shape=(32, 32, 3)),
Conv2D(64, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.3),
Conv2D(128, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.3),
Conv2D(256, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.3),
Conv2D(512, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
Dropout(0.4),
Conv2D(512, (3, 3), activation='relu', padding='same'),
BatchNormalization(),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.4),
GlobalAveragePooling2D(),
Dense(1024, activation='relu'),
Dropout(0.5),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(100, activation='softmax')
])
# تجميع النموذج مع استخدام Adam
model.compile(
loss='categorical_crossentropy',
optimizer=Adam(learning_rate=0.001),
metrics=['accuracy', tf.keras.metrics.Precision(name='precision'), tf.keras.metrics.Recall(name='recall')]
)
# تدريب النموذج
history = model.fit(
datagen.flow(x_train, y_train_encoded, batch_size=64),
epochs=50,
validation_data=(x_test, y_test_encoded),
verbose=1,
callbacks=[LearningRateScheduler(scheduler), early_stopping, reduce_lr]
)
# حفظ النموذج المدرب
model.save('original_model.h5')
# In[38]:
model = load_model('original_model.h5')
# تقييم النموذج على بيانات الاختبار
loss, accuracy, precision, recall = model.evaluate(x_test, y_test_encoded, verbose=1)
print(f"Test Accuracy: {accuracy * 100:.2f}%")
print(f"Test Precision: {precision * 100:.2f}%")
print(f"Test Recall: {recall * 100:.2f}%")
print(f"Test Loss: {loss * 100:.4f}%")
# In[39]:
model = load_model('original_model.h5')
# اختيار بعض الصور العشوائية من مجموعة الاختبار
num_images = 5
random_indices = np.random.choice(len(x_test), num_images)
sample_images_test = x_test[random_indices]
# تحويل الصور من Tensor إلى NumPy
sample_images_test_np = [img.numpy() if isinstance(img, tf.Tensor) else img for img in sample_images_test]
# تحويل الصور إلى نوع uint8
sample_images_test_np = [img.astype(np.uint8) for img in sample_images_test_np]
# تحسين دقة الصورة باستخدام PIL
from PIL import Image
def upscale_image(image, scale_factor):
img = Image.fromarray(image)
new_size = (img.width * scale_factor, img.height * scale_factor)
img_upscaled = img.resize(new_size, Image.BICUBIC) # استخدام تقنية الاستيفاء البعدي
return np.array(img_upscaled)
# عرض الصور الأصلية والمحسنة من مجموعة الاختبار
plt.figure(figsize=(20, 10), dpi=100)
for i in range(num_images):
plt.subplot(2, num_images, i + 1)
plt.imshow(sample_images_test_np[i])
plt.title(f"Original Test Image {i+1}", fontsize=16)
plt.axis('off')
plt.subplot(2, num_images, i + 1 + num_images)
img_upscaled = upscale_image(sample_images_test_np[i], 4)
plt.imshow(img_upscaled)
plt.title(f"Upscaled Test Image {i+1}", fontsize=16)
plt.axis('off')
plt.tight_layout()
plt.show()
# In[40]:
model = load_model('original_model.h5')
# رسم منحنيات التدريب
plt.figure(figsize=(18, 10))
# Accuracy
plt.subplot(2, 2, 1)
plt.plot(history.history['accuracy'], label='Accuracy')
plt.plot(history.history['val_accuracy'], label='Val Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Training and Validation Accuracy')
# Loss
plt.subplot(2, 2, 2)
plt.plot(history.history['loss'], label='Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.title('Training and Validation Loss')
# Precision
plt.subplot(2, 2, 3)
plt.plot(history.history['precision'], label='Precision')
plt.plot(history.history['val_precision'], label='Val Precision')
plt.xlabel('Epochs')
plt.ylabel('Precision')
plt.legend()
plt.title('Training and Validation Precision')
# Recall
plt.subplot(2, 2, 4)
plt.plot(history.history['recall'], label='Recall')
plt.plot(history.history['val_recall'], label='Val Recall')
plt.xlabel('Epochs')
plt.ylabel('Recall')
plt.legend()
plt.title('Training and Validation Recall')
plt.tight_layout()
plt.show()
# In[41]:
model = load_model('original_model.h5')
model.summary()
# In[44]:
# تحميل بيانات CIFAR-100
(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
# تحويل التسميات إلى ترميز الفئات الثنائية
num_classes = 100
y_train_encoded = to_categorical(y_train, num_classes=num_classes)
y_test_encoded = to_categorical(y_test, num_classes=num_classes)
# دالة لتحويلات الملمس
def apply_texture_transformations(image):
blurred_image = gaussian_filter(image, sigma=0.5)
laplacian_image = laplace(blurred_image, mode='reflect') / 4.0
noise = np.random.normal(0, 0.01, image.shape) * 255
noisy_image = image + noise
transformed_image = 0.8 * image + 0.1 * laplacian_image + 0.1 * noisy_image
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
return transformed_image
# نسبة التسميم
poison_fraction = 0.5
num_poisoned = int(poison_fraction * len(x_train))
poisoned_indices = np.arange(len(x_train))
x_poison_part = x_train[poisoned_indices]
y_poison_encoded_part = y_train_encoded[poisoned_indices]
x_poisoned = np.array([apply_texture_transformations(img) for img in x_poison_part])
x_train_combined = x_poisoned
y_train_encoded_combined = y_poison_encoded_part
# إعداد مولد بيانات التعزيز
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.3,
height_shift_range=0.3,
shear_range=0.3,
zoom_range=0.3,
horizontal_flip=True,
fill_mode='nearest',
brightness_range=[0.8, 1.2],
channel_shift_range=0.1
)
datagen.fit(x_train_combined)
# إعداد الإيقاف المبكر وتقليل معدل التعلم
early_stopping = EarlyStopping(
monitor='val_loss',
patience=10,
restore_best_weights=True,
verbose=1
)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss',
factor=0.5,
patience=5,
min_lr=1e-6,
verbose=1
)
# تحميل النموذج الأصلي
model = load_model('original_model.h5')
# إعادة تجميع النموذج الأصلي مع البيانات المسمومة
model.compile(
loss='categorical_crossentropy',
optimizer=Adam(learning_rate=0.001),
metrics=['accuracy', 'precision', 'recall'] # تم إزالة 'loss' من المقاييس
)
# تدريب النموذج على البيانات المسمومة
history = model.fit(
datagen.flow(x_train_combined, y_train_encoded_combined, batch_size=64),
epochs=20,
validation_data=(x_test, y_test_encoded),
verbose=1,
callbacks=[early_stopping, reduce_lr]
)
# حفظ النموذج باستخدام الدالة المعرفة
model.save('texture_transformed_model.h5')
# In[47]:
model = load_model('texture_transformed_model.h5')
# تقييم النموذج على بيانات الاختبار
loss, accuracy, precision, recall = model.evaluate(x_test, y_test_encoded, verbose=1)
print(f"Test Accuracy: {accuracy * 100:.2f}%")
print(f"Test Precision: {precision * 100:.2f}%")
print(f"Test Recall: {recall * 100:.2f}%")
print(f"Test Loss: {loss * 100:.4f}%")
# In[51]:
model = load_model('texture_transformed_model.h5')
# تقييم النموذج لبناء المقاييس
initial_evaluation = model.evaluate(x_test, y_test_encoded, verbose=1)
print(f"Initial evaluation - Loss: {initial_evaluation[0]}, Accuracy: {initial_evaluation[1]}")
# In[62]:
# تحميل النموذج المحول
model = load_model('texture_transformed_model.h5')
# تحديد عدد الصور للعرض
num_samples = 6
random_indices = np.random.choice(len(x_train), num_samples, replace=False)
plt.figure(figsize=(15, 6))
for i, idx in enumerate(random_indices):
# عرض الصور الأصلية
plt.subplot(2, num_samples, i + 1)
plt.imshow(x_train[idx].astype('uint8'))
plt.title(f'Original {y_train[idx][0]}')
plt.axis('off')
# عرض الصور المسممة
plt.subplot(2, num_samples, i + 1 + num_samples)
plt.imshow(x_poisoned[idx].astype('uint8'))
plt.title(f'Poisoned {y_train[idx][0]}')
plt.axis('off')
plt.tight_layout()
plt.show()
# In[48]:
model = load_model('texture_transformed_model.h5')
# عرض الصور الأصلية والمسممة للمقارنة
num_samples = 6
random_indices = np.random.choice(len(x_train), num_samples, replace=False)
plt.figure(figsize=(15, 6))
for i, idx in enumerate(random_indices):
plt.subplot(2, num_samples, i + 1)
plt.imshow(x_train[idx].astype('uint8'))
plt.title(f'Original {y_train[idx][0]}')
plt.axis('off')
plt.subplot(2, num_samples, i + 1 + num_samples)
plt.imshow(x_poisoned[idx].astype('uint8'))
plt.title(f'Poisoned {y_train[idx][0]}')
plt.axis('off')
plt.show()
# In[49]:
model = load_model('texture_transformed_model.h5')
plt.tight_layout()
plt.show()
# عرض النتائج من التدريب
plt.figure(figsize=(12, 6))
plt.subplot(2, 2, 1)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Accuracy over epochs')
plt.legend()
plt.subplot(2, 2, 2)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Loss over epochs')
plt.legend()
plt.subplot(2, 2, 3)
plt.plot(history.history['precision'], label='Training Precision')
plt.plot(history.history['val_precision'], label='Validation Precision')
plt.title('Precision over epochs')
plt.legend()
plt.subplot(2, 2, 4)
plt.plot(history.history['recall'], label='Training Recall')
plt.plot(history.history['val_recall'], label='Validation Recall')
plt.title('Recall over epochs')
plt.legend()
plt.tight_layout()
plt.show()
# In[64]:
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from scipy.ndimage import gaussian_filter, laplace
import tensorflow as tf
# Load the trained model
model = load_model('texture_transformed_model.h5')
# Ensure the model is compiled with metrics
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Function for texture transformations with reduced effects
def apply_texture_transformations(image):
blurred_image = gaussian_filter(image, sigma=0.05) # Reduce sigma to minimum
laplacian_image = laplace(blurred_image, mode='reflect') / 100.0 # Significantly reduce laplace effect
noise = np.random.normal(0, 0.001, image.shape) * 255 # Significantly reduce noise
noisy_image = image + noise
transformed_image = 0.98 * image + 0.01 * laplacian_image + 0.01 * noisy_image # Minimize transformation effects
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
return transformed_image
# Function to resize image while maintaining quality using Bicubic Interpolation
def resize_image_with_quality(image, target_size):
resized_image = cv2.resize(image, target_size, interpolation=cv2.INTER_CUBIC)
return resized_image
# Function to load and process external images while retaining original size
def load_and_preprocess_image(image_path):
if not os.path.exists(image_path):
print(f"File not found: {image_path}")
return None
img = load_img(image_path)
img_array = img_to_array(img)
original_shape = img_array.shape[:2] # Save original dimensions without channels
resized_image = resize_image_with_quality(img_array, (224, 224)) # Resize to larger size to retain details
resized_image = resized_image.astype('float32') / 255.0 # Normalize the image
return resized_image, original_shape
# Paths to external images
image_paths = [
r'C:\Users\Lenovo\Desktop\jaguar.jpeg',
r'C:\Users\Lenovo\Desktop\images.jpeg',
r'C:\Users\Lenovo\Desktop\tree.jpeg'
]
# Load and process external images while retaining original dimensions
external_images_info = [load_and_preprocess_image(image_path) for image_path in image_paths]
external_images_info = [info for info in external_images_info if info is not None]
# Check if any images were loaded
if not external_images_info:
print("No images were loaded. Please check your image paths.")
else:
external_images, original_shapes = zip(*external_images_info)
external_images = np.array(external_images)
# Apply texture transformations
external_images_transformed = np.array([apply_texture_transformations(img * 255) / 255.0 for img in external_images])
# Resize transformed images to their original size
external_images_transformed_resized = []
for i, transformed_image in enumerate(external_images_transformed):
original_shape = original_shapes[i] # Extract original dimensions
transformed_resized = resize_image_with_quality(transformed_image * 255, original_shape[::-1]) # Note CV2 dimensions (width x height)
external_images_transformed_resized.append(transformed_resized)
# Define the prediction function
@tf.function
def model_predict(model, input_data):
return model(input_data, training=False)
# Conduct predictions
predictions = model_predict(model, external_images_transformed)
# Display results
for i, image_path in enumerate(image_paths):
if os.path.exists(image_path):
plt.figure(figsize=(10, 5))
# Display the original image
plt.subplot(1, 2, 1)
original_img = load_img(image_path)
plt.imshow(original_img)
plt.title('Original Image')
plt.axis('off')
# Display the poisoned image
plt.subplot(1, 2, 2)
poisoned_img = external_images_transformed_resized[i]
plt.imshow(poisoned_img.astype(np.uint8))
plt.title('Poisoned Image')
plt.axis('off')
plt.suptitle(f'Prediction: {np.argmax(predictions[i])}')
plt.show()
# In[63]:
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from scipy.ndimage import gaussian_filter, laplace
# تحميل النموذج المدرب
model = load_model('texture_transformed_model.h5')
# دالة لتحويلات النسيج مع تقليل التأثيرات
def apply_texture_transformations(image):
blurred_image = gaussian_filter(image, sigma=0.05)
laplacian_image = laplace(blurred_image, mode='reflect') / 100.0
noise = np.random.normal(0, 0.001, image.shape) * 255
noisy_image = image + noise
transformed_image = 0.98 * image + 0.01 * laplacian_image + 0.01 * noisy_image
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
return transformed_image
# دالة لإعادة تشكيل الصورة مع الحفاظ على الجودة باستخدام Bicubic Interpolation
def resize_image_with_quality(image, target_size):
resized_image = cv2.resize(image, target_size, interpolation=cv2.INTER_CUBIC)
return resized_image
# دالة لتحميل ومعالجة الصور الخارجية مع الاحتفاظ بحجمها الأصلي
def load_and_preprocess_image(image_path):
if not os.path.exists(image_path):
print(f"File not found: {image_path}")
return None
img = load_img(image_path)
img_array = img_to_array(img)
original_shape = img_array.shape[:2]
resized_image = resize_image_with_quality(img_array, (224, 224))
resized_image = resized_image.astype('float32') / 255.0
return resized_image, original_shape
# مسارات الصور الخارجية
image_paths = [
r'C:\Users\Lenovo\Desktop\jaguar.jpeg',
r'C:\Users\Lenovo\Desktop\images.jpeg',
r'C:\Users\Lenovo\Desktop\tree.jpeg'
]
# تحميل ومعالجة الصور الخارجية مع الحفاظ على الأبعاد الأصلية
external_images_info = [load_and_preprocess_image(image_path) for image_path in image_paths]
external_images_info = [info for info in external_images_info if info is not None]
# التحقق مما إذا كانت هناك صور تم تحميلها
if not external_images_info:
print("No images were loaded. Please check your image paths.")
else:
external_images, original_shapes = zip(*external_images_info)
external_images = np.array(external_images)
# تطبيق التحويلات الملمسية
external_images_transformed = np.array([apply_texture_transformations(img * 255) / 255.0 for img in external_images])
# إعادة تشكيل الصور المسممة إلى حجمها الأصلي
external_images_transformed_resized = []
for i, transformed_image in enumerate(external_images_transformed):
original_shape = original_shapes[i]
transformed_resized = resize_image_with_quality(transformed_image * 255, original_shape[::-1])
external_images_transformed_resized.append(transformed_resized)
# إجراء التنبؤ
predictions = model.predict(external_images_transformed)
# عرض النتائج
for i, image_path in enumerate(image_paths):
if os.path.exists(image_path):
plt.figure(figsize=(10, 5))
# عرض الصورة الأصلية
plt.subplot(1, 2, 1)
original_img = load_img(image_path)
plt.imshow(original_img)
plt.title('Original Image')
plt.axis('off')
# عرض الصورة المسممة
plt.subplot(1, 2, 2)
poisoned_img = external_images_transformed_resized[i]
plt.imshow(poisoned_img.astype(np.uint8))
plt.title('Poisoned Image')
plt.axis('off')
plt.suptitle(f'Prediction: {np.argmax(predictions[i])}')
plt.show()
# In[ ]:
from flask import Flask, request, jsonify
import numpy as np
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.models import load_model
import cv2
from scipy.ndimage import gaussian_filter, laplace
app = Flask(__name__)
# Load your model
model = load_model('texture_transformed_model.h5')
# Define functions for image processing
def apply_texture_transformations(image):
# Your texture transformation function here
pass
def resize_image_with_quality(image, target_size):
# Your image resizing function here
pass
def load_and_preprocess_image(image_path):
# Your image loading and preprocessing function here
pass
@app.route('/predict', methods=['POST'])
def predict():
if 'image' not in request.files:
return jsonify({'error': 'No file part in the request'}), 400
file = request.files['image']
image_path = f'/tmp/{file.filename}'
file.save(image_path)
# Process the uploaded image
image, _ = load_and_preprocess_image(image_path)
transformed_image = apply_texture_transformations(image)
# Make predictions
prediction = model.predict(np.expand_dims(transformed_image, axis=0))
# Decode prediction (assuming your model outputs categorical predictions)
predicted_class = np.argmax(prediction)
# Return the result
return jsonify({'prediction': predicted_class})
if __name__ == '__main__':
app.run(debug=True)
# In[ ]:
python app.py
#http://127.0.0.1:5000/predict
# In[ ]:
|