Update README.md
Browse files
README.md
CHANGED
@@ -84,3 +84,85 @@ The NORA.LLM language model family includes (as of now):
|
|
84 |
- [**NorMistral-7b-warm**](https://huggingface.co/norallm/normistral-7b-warm) -- an LLM initialized from [Mistral-7b-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and continuously pretrained on Norwegian data;
|
85 |
- [**NorMistral-7b-scratch**](https://huggingface.co/norallm/normistral-7b-scratch) -- a Mistral-based LLM pretrained from scratch on Norwegian data;
|
86 |
- [**NorBLOOM-7b-scratch**](https://huggingface.co/norallm/NorBLOOM-7b-scratch) -- a BLOOM-based LLM pretrained from scratch on Norwegian data.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
- [**NorMistral-7b-warm**](https://huggingface.co/norallm/normistral-7b-warm) -- an LLM initialized from [Mistral-7b-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and continuously pretrained on Norwegian data;
|
85 |
- [**NorMistral-7b-scratch**](https://huggingface.co/norallm/normistral-7b-scratch) -- a Mistral-based LLM pretrained from scratch on Norwegian data;
|
86 |
- [**NorBLOOM-7b-scratch**](https://huggingface.co/norallm/NorBLOOM-7b-scratch) -- a BLOOM-based LLM pretrained from scratch on Norwegian data.
|
87 |
+
|
88 |
+
_____
|
89 |
+
## Quantization
|
90 |
+
|
91 |
+
### Provided files
|
92 |
+
|
93 |
+
| Name | Quant method | Bits Per Weight | Size | Max RAM/VRAM required | Use case |
|
94 |
+
| ---- | ---- | ---- | ---- | ---- | ----- |
|
95 |
+
| [normistral-7b-warm-instruct.Q3_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-instruct.Q3_K_M.gguf) | Q3_K_M | 3.89 | 3.28 GB| 5.37 GB | very small, high quality loss |
|
96 |
+
| [normistral-7b-warm-instruct.Q4_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-instruct.Q4_K_M.gguf) | Q4_K_M | 4.83 | 4.07 GB| 6.16 GB | medium, balanced quality - recommended |
|
97 |
+
| [normistral-7b-warm-instruct.Q5_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-instruct.Q5_K_M.gguf) | Q5_K_M | 5.67 | 4.78 GB| 6.87 GB | large, very low quality loss - recommended |
|
98 |
+
| [normistral-7b-warm-instruct.Q6_K.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-instruct.Q6_K.gguf) | Q6_K | 6.56 | 5.54 GB| 7.63 GB | very large, extremely low quality loss |
|
99 |
+
| [normistral-7b-warm-instruct.Q8_0.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-instruct.Q8_0.gguf) | Q8_0 | 8.50 | 7.17 GB| 9.26 GB | very large, extremely low quality loss - not recommended |
|
100 |
+
|
101 |
+
### How to run from Python code
|
102 |
+
|
103 |
+
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) for example.
|
104 |
+
|
105 |
+
#### How to load this model in Python code, using llama-cpp-python
|
106 |
+
|
107 |
+
For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).
|
108 |
+
|
109 |
+
#### First install the package
|
110 |
+
|
111 |
+
Run one of the following commands, according to your system:
|
112 |
+
|
113 |
+
```shell
|
114 |
+
# Base llama-ccp-python with no GPU acceleration
|
115 |
+
pip install llama-cpp-python
|
116 |
+
# With NVidia CUDA acceleration
|
117 |
+
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
|
118 |
+
# Or with OpenBLAS acceleration
|
119 |
+
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
|
120 |
+
# Or with CLBLast acceleration
|
121 |
+
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
|
122 |
+
# Or with AMD ROCm GPU acceleration (Linux only)
|
123 |
+
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
|
124 |
+
# Or with Metal GPU acceleration for macOS systems only
|
125 |
+
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
|
126 |
+
|
127 |
+
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
|
128 |
+
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
|
129 |
+
pip install llama-cpp-python
|
130 |
+
```
|
131 |
+
|
132 |
+
#### Simple llama-cpp-python example code
|
133 |
+
|
134 |
+
```python
|
135 |
+
from llama_cpp import Llama
|
136 |
+
|
137 |
+
# Directly from huggingface-hub (requires huggingface-hub to be installed)
|
138 |
+
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
139 |
+
llm = Llama.from_pretrained(
|
140 |
+
repo_id="norallm/normistral-7b-warm-instruct", # HuggingFace repository containing the GGUF files.
|
141 |
+
filename="*Q4_K_M.gguf", # suffix of the filename containing the level of quantization.
|
142 |
+
n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
|
143 |
+
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
|
144 |
+
n_gpu_layers=16 # The number of layers to offload to GPU, if you have GPU acceleration available
|
145 |
+
)
|
146 |
+
|
147 |
+
# Simple inference example
|
148 |
+
output = llm(
|
149 |
+
"""<s><|im_start|> user
|
150 |
+
Hva kan jeg bruke einstape til?<|im_end|><|im_start|> assitant
|
151 |
+
""", # Prompt
|
152 |
+
max_tokens=512, # Generate up to 512 tokens
|
153 |
+
stop=["<|im_end|>"], # Example stop token
|
154 |
+
echo=True, # Whether to echo the prompt
|
155 |
+
temperature=0.3 # Temperature to set, for Q3_K_M, Q4_K_M, Q5_K_M, and Q6_0 it is recommended to set it relatively low.
|
156 |
+
)
|
157 |
+
|
158 |
+
# Chat Completion API
|
159 |
+
|
160 |
+
llm.create_chat_completion(
|
161 |
+
messages = [
|
162 |
+
{
|
163 |
+
"role": "user",
|
164 |
+
"content": Hva kan jeg bruke einstape til?"
|
165 |
+
}
|
166 |
+
]
|
167 |
+
)
|
168 |
+
```
|