File size: 2,743 Bytes
ee7ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import Pipeline, AutoModelForImageClassification
import torch
from PIL import Image
import cv2
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
from facenet_pytorch import MTCNN
import torch.nn.functional as F

class DeepFakePipeline(Pipeline):
    def __init__(self,**kwargs):
        Pipeline.__init__(self,**kwargs)
    def _sanitize_parameters(self, **kwargs):
        return {}, {}, {}
    def preprocess(self, inputs):
        return inputs
    def _forward(self,input):
      return input
    def postprocess(self,confidences,face_with_mask):
        out =  {"confidences":confidences,
        "face_with_mask": face_with_mask}
        return out

    def predict(self,input_image:str):
      DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
      mtcnn = MTCNN(
          select_largest=False,
          post_process=False,
          device=DEVICE)
      mtcnn.to(DEVICE)
      model = self.model.model
      model.to(DEVICE)

      input_image = Image.open(input_image)
      face = mtcnn(input_image)
      if face is None:
          raise Exception('No face detected')

      face = face.unsqueeze(0) # add the batch dimension
      face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)

      # convert the face into a numpy array to be able to plot it
      prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
      prev_face = prev_face.astype('uint8')

      face = face.to(DEVICE)
      face = face.to(torch.float32)
      face = face / 255.0
      face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()

      target_layers=[model.block8.branch1[-1]]
      cam = GradCAM(model=model, target_layers=target_layers)
      targets = [ClassifierOutputTarget(0)]
      grayscale_cam = cam(input_tensor=face, targets=targets,eigen_smooth=True)
      grayscale_cam = grayscale_cam[0, :]
      visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
      face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0)

      with torch.no_grad():
          output = torch.sigmoid(model(face).squeeze(0))
          prediction = "real" if output.item() < 0.5 else "fake"
          
          real_prediction = 1 - output.item()
          fake_prediction = output.item()
          
          confidences = {
              'real': real_prediction,
              'fake': fake_prediction
          }
      return self.postprocess(confidences, face_with_mask)