--- library_name: transformers language: - gsw license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - notebotIE/zh_split_preprocessed metrics: - wer model-index: - name: Whisper Large V2 - Swiss German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: SwissDialDataset_ETH type: notebotIE/zh_split_preprocessed metrics: - name: Wer type: wer value: 0.15773877364941874 --- # Whisper Large V2 - Swiss German This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the SwissDialDataset_ETH dataset. It achieves the following results on the evaluation set: - Loss: 0.2462 - Wer Ortho: 0.2459 - Wer: 0.1577 - Cer: 0.0373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 5 - training_steps: 250 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:| | 0.4177 | 0.2460 | 50 | 0.3617 | 0.3915 | 0.3244 | 0.1232 | | 0.285 | 0.4920 | 100 | 0.3100 | 0.2905 | 0.2013 | 0.0409 | | 0.2659 | 0.7380 | 150 | 0.2632 | 0.3753 | 0.2909 | 0.4770 | | 0.2401 | 0.9840 | 200 | 0.2372 | 0.2541 | 0.1568 | 0.0321 | | 0.1192 | 1.2300 | 250 | 0.2462 | 0.2459 | 0.1577 | 0.0373 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3