--- library_name: transformers language: - gsw license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - notebotIE/zh_split_preprocessed metrics: - wer model-index: - name: Whisper Large V2 - Swiss German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: SwissDialDataset_ETH type: notebotIE/zh_split_preprocessed metrics: - name: Wer type: wer value: 0.1923865967631639 --- # Whisper Large V2 - Swiss German This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the SwissDialDataset_ETH dataset. It achieves the following results on the evaluation set: - Loss: 0.2725 - Wer Ortho: 0.2707 - Wer: 0.1924 - Cer: 0.0743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:| | 0.1277 | 1.2300 | 250 | 0.2468 | 0.2631 | 0.1855 | 0.0556 | | 0.0726 | 2.4600 | 500 | 0.2414 | 0.9085 | 0.6793 | 0.5239 | | 0.0405 | 3.6900 | 750 | 0.2519 | 0.5194 | 0.6558 | 0.4984 | | 0.0296 | 4.9200 | 1000 | 0.2725 | 0.2707 | 0.1924 | 0.0743 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3